These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 28745763)

  • 1. Cobalt Schiff-base complexes for electrocatalytic hydrogen generation.
    DiRisio RJ; Armstrong JE; Frank MA; Lake WR; McNamara WR
    Dalton Trans; 2017 Aug; 46(31):10418-10425. PubMed ID: 28745763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen evolution catalyzed by a cobalt complex containing an asymmetric Schiff-base ligand.
    Armstrong JE; Crossland PM; Frank MA; Van Dongen MJ; McNamara WR
    Dalton Trans; 2016 Apr; 45(13):5430-3. PubMed ID: 26948148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Cobalt Catalysts for O
    Wang YH; Pegis ML; Mayer JM; Stahl SS
    J Am Chem Soc; 2017 Nov; 139(46):16458-16461. PubMed ID: 29039921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mononuclear Fe(III) Schiff base antipyrine complexes for catalytic hydrogen generation.
    Cropley JD; Mitchell AC; Fritsch NA; Ho M; Wells TD; Reynolds TM; Brennessel WW; McNamara WR
    Dalton Trans; 2024 Sep; 53(37):15421-15426. PubMed ID: 39246062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalytic and Photocatalytic Reduction of CO
    Wang JW; Huang HH; Sun JK; Ouyang T; Zhong DC; Lu TB
    ChemSusChem; 2018 Mar; 11(6):1025-1031. PubMed ID: 29385321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes.
    Hu X; Brunschwig BS; Peters JC
    J Am Chem Soc; 2007 Jul; 129(29):8988-98. PubMed ID: 17602556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly functionalizable penta-coordinate iron hydrogen production catalysts with low overpotentials.
    Eady SC; Breault T; Thompson L; Lehnert N
    Dalton Trans; 2016 Jan; 45(3):1138-51. PubMed ID: 26661506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic reduction of oxygen to water by non-heme iron complexes: exploring the effect of the secondary coordination sphere proton exchanging site.
    Santra A; Das A; Kaur S; Jain P; Ingole PP; Paria S
    Chem Sci; 2024 Mar; 15(11):4095-4105. PubMed ID: 38487234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen generation catalyzed by fluorinated diglyoxime-iron complexes at low overpotentials.
    Rose MJ; Gray HB; Winkler JR
    J Am Chem Soc; 2012 May; 134(20):8310-3. PubMed ID: 22583071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermochemical and mechanistic studies of electrocatalytic hydrogen production by cobalt complexes containing pendant amines.
    Wiedner ES; Appel AM; DuBois DL; Bullock RM
    Inorg Chem; 2013 Dec; 52(24):14391-403. PubMed ID: 24261463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational study of the mechanism of hydrogen evolution by cobalt(diimine-dioxime) catalysts.
    Bhattacharjee A; Andreiadis ES; Chavarot-Kerlidou M; Fontecave M; Field MJ; Artero V
    Chemistry; 2013 Nov; 19(45):15166-74. PubMed ID: 24105795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cobalt electrocatalyst for proton reduction at low overpotential.
    Ahn HS; Davenport TC; Tilley TD
    Chem Commun (Camb); 2014 Apr; 50(29):3834-7. PubMed ID: 24589710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo- and electrocatalytic H2 production by new first-row transition-metal complexes based on an aminopyridine pentadentate ligand.
    Call A; Codolà Z; Acuña-Parés F; Lloret-Fillol J
    Chemistry; 2014 May; 20(20):6171-83. PubMed ID: 24692261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen evolution catalyzed by an iron polypyridyl complex in aqueous solutions.
    Connor GP; Mayer KJ; Tribble CS; McNamara WR
    Inorg Chem; 2014 Jun; 53(11):5408-10. PubMed ID: 24848899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfinato iron(III) complex for electrocatalytic proton reduction.
    Cavell AC; Hartley CL; Liu D; Tribble CS; McNamara WR
    Inorg Chem; 2015 Apr; 54(7):3325-30. PubMed ID: 25806594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient two-electron reduction of dioxygen to hydrogen peroxide with one-electron reductants with a small overpotential catalyzed by a cobalt chlorin complex.
    Mase K; Ohkubo K; Fukuzumi S
    J Am Chem Soc; 2013 Feb; 135(7):2800-8. PubMed ID: 23343346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of chromium(III) Schiff base complexes: antimicrobial activity and its electrocatalytic sensing ability of catechol.
    Kumar SP; Suresh R; Giribabu K; Manigandan R; Munusamy S; Muthamizh S; Narayanan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():431-41. PubMed ID: 25576940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic hydrogen evolution in acidic water with molecular cobalt tetraazamacrocycles.
    McCrory CC; Uyeda C; Peters JC
    J Am Chem Soc; 2012 Feb; 134(6):3164-70. PubMed ID: 22280515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution.
    Liu Q; Tian J; Cui W; Jiang P; Cheng N; Asiri AM; Sun X
    Angew Chem Int Ed Engl; 2014 Jun; 53(26):6710-4. PubMed ID: 24845625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine-containing ligands enhance H₂ oxidation catalyst performance.
    Dutta A; Roberts JA; Shaw WJ
    Angew Chem Int Ed Engl; 2014 Jun; 53(25):6487-91. PubMed ID: 24820824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.