These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28745874)

  • 21. Unconventional Molecular Design Approach of High-Efficiency Deep Blue Thermally Activated Delayed Fluorescent Emitters Using Indolocarbazole as an Acceptor.
    Seo JA; Im Y; Han SH; Lee CW; Lee JY
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37864-37872. PubMed ID: 28980471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Constructing a Novel Dendron for a Self-Host Blue Emitter with Thermally Activated Delayed Fluorescence: Solution-Processed Nondoped Organic Light-Emitting Diodes with Bipolar Charge Transfer and Stable Color Purity.
    Ban X; Lin B; Jiang W; Sun Y
    Chem Asian J; 2017 Jan; 12(2):216-223. PubMed ID: 27905194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isomeric Thermally Activated Delayed Fluorescence Emitters for Color Purity-Improved Emission in Organic Light-Emitting Devices.
    Chen DY; Liu W; Zheng CJ; Wang K; Li F; Tao SL; Ou XM; Zhang XH
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16791-8. PubMed ID: 27296853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonbonding/Bonding Molecular Orbital Regulation of Nitrogen-Boron-Oxygen-embedded Blue/Green Multiresonant TADF Emitters with High Efficiency and Color Purity.
    Liu G; Sasabe H; Kumada K; Arai H; Kido J
    Chemistry; 2022 Aug; 28(48):e202201605. PubMed ID: 35678220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermally Activated Delayed Fluorescence Emitters Based on a Special Tetrahedral Silane Core.
    Liu J; Zhao Z; Li Q; Hua L; Zhao H; Yu C; Cao W; Ren Z
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37874777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of Linear and V-Shaped Carbazolyl-Substituted Pyridine-3,5-dicarbonitriles Exhibiting Efficient Bipolar Charge Transport and E-Type Fluorescence.
    Vigante B; Leitonas K; Volyniuk D; Andruleviciene V; Simokaitiene J; Ivanova A; Bucinskas A; Grazulevicius JV; Arsenyan P
    Chemistry; 2019 Mar; 25(13):3325-3336. PubMed ID: 30536688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New Benzimidazole-Based Bipolar Hosts: Highly Efficient Phosphorescent and Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes Employing the Same Device Structure.
    Zhao Y; Wu C; Qiu P; Li X; Wang Q; Chen J; Ma D
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2635-43. PubMed ID: 26731494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rational Molecular Design Overcoming the Long Delayed Fluorescence Lifetime and Serious Efficiency Roll-Off in Blue Thermally Activated Delayed Fluorescent Devices.
    Oh CS; Lee HL; Han SH; Lee JY
    Chemistry; 2019 Jan; 25(2):642-648. PubMed ID: 30338877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rigidity-Induced Delayed Fluorescence by Ortho Donor-Appended Triarylboron Compounds: Record-High Efficiency in Pure Blue Fluorescent Organic Light-Emitting Diodes.
    Lee YH; Park S; Oh J; Shin JW; Jung J; Yoo S; Lee MH
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24035-24042. PubMed ID: 28653832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbazole dendrimers as solution-processable thermally activated delayed-fluorescence materials.
    Albrecht K; Matsuoka K; Fujita K; Yamamoto K
    Angew Chem Int Ed Engl; 2015 May; 54(19):5677-82. PubMed ID: 25753430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous improvement of emission color, singlet-triplet energy gap, and quantum efficiency of blue thermally activated delayed fluorescent emitters using a 1-carbazolylcarbazole based donor.
    Kim M; Choi JM; Lee JY
    Chem Commun (Camb); 2016 Aug; 52(65):10032-5. PubMed ID: 27443818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Achieving a balance between small singlet-triplet energy splitting and high fluorescence radiative rate in a quinoxaline-based orange-red thermally activated delayed fluorescence emitter.
    Yu L; Wu Z; Xie G; Zhong C; Zhu Z; Cong H; Ma D; Yang C
    Chem Commun (Camb); 2016 Sep; 52(73):11012-5. PubMed ID: 27540606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes.
    Rajamalli P; Senthilkumar N; Gandeepan P; Huang PY; Huang MJ; Ren-Wu CZ; Yang CY; Chiu MJ; Chu LK; Lin HW; Cheng CH
    J Am Chem Soc; 2016 Jan; 138(2):628-34. PubMed ID: 26709617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Realizing Highly Efficient Solution-Processed Homojunction-Like Sky-Blue OLEDs by Using Thermally Activated Delayed Fluorescent Emitters Featuring an Aggregation-Induced Emission Property.
    Wu K; Wang Z; Zhan L; Zhong C; Gong S; Xie G; Yang C
    J Phys Chem Lett; 2018 Apr; 9(7):1547-1553. PubMed ID: 29510050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical tuning of the singlet-triplet energy gap to achieve efficient long-wavelength thermally activated delayed fluorescence emitters: the impact of substituents.
    Wang L; Li T; Feng P; Song Y
    Phys Chem Chem Phys; 2017 Aug; 19(32):21639-21647. PubMed ID: 28766601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Orientations of Delayed Fluorescent Emitters in a Series of Carbazole-Based Host Materials.
    Sasabe H; Chikayasu Y; Ohisa S; Arai H; Ohsawa T; Komatsu R; Watanabe Y; Yokoyama D; Kido J
    Front Chem; 2020; 8():427. PubMed ID: 32528932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ideal Molecular Design of Blue Thermally Activated Delayed Fluorescent Emitter for High Efficiency, Small Singlet-Triplet Energy Splitting, Low Efficiency Roll-Off, and Long Lifetime.
    Lee DR; Choi JM; Lee CW; Lee JY
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23190-6. PubMed ID: 27529181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The design of dual emitting cores for green thermally activated delayed fluorescent materials.
    Cho YJ; Jeon SK; Chin BD; Yu E; Lee JY
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5201-4. PubMed ID: 25727757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aggregation-Enhanced Emission and Thermally Activated Delayed Fluorescence of Derivatives of 9-Phenyl-9H-Carbazole: Effects of Methoxy and tert-Butyl Substituents.
    Grybauskaite-Kaminskiene G; Volyniuk D; Mimaite V; Bezvikonnyi O; Bucinskas A; Bagdziunas G; Grazulevicius JV
    Chemistry; 2018 Jul; 24(38):9581-9591. PubMed ID: 29663596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design strategy for 25% external quantum efficiency in green and blue thermally activated delayed fluorescent devices.
    Lee DR; Kim M; Jeon SK; Hwang SH; Lee CW; Lee JY
    Adv Mater; 2015 Oct; 27(39):5861-7. PubMed ID: 26308481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.