These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 28746383)

  • 1. Validation of functional calibration and strap-down joint drift correction for computing 3D joint angles of knee, hip, and trunk in alpine skiing.
    Fasel B; Spörri J; Schütz P; Lorenzetti S; Aminian K
    PLoS One; 2017; 12(7):e0181446. PubMed ID: 28746383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint Inertial Sensor Orientation Drift Reduction for Highly Dynamic Movements.
    Fasel B; Sporri J; Chardonnens J; Kroll J; Muller E; Aminian K
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):77-86. PubMed ID: 28141537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional calibration procedure for 3D knee joint angle description using inertial sensors.
    Favre J; Aissaoui R; Jolles BM; de Guise JA; Aminian K
    J Biomech; 2009 Oct; 42(14):2330-5. PubMed ID: 19665712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of 3D Knee Joint Angles during Cycling Using Inertial Sensors: Accuracy of a Novel Sensor-to-Segment Calibration Procedure Based on Pedaling Motion.
    Cordillet S; Bideau N; Bideau B; Nicolas G
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31151200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of Novel Relative Orientation and Inertial Sensor-to-Segment Alignment Algorithms for Estimating 3D Hip Joint Angles.
    Adamowicz L; Gurchiek RD; Ferri J; Ursiny AT; Fiorentino N; McGinnis RS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambulatory measurement of 3D knee joint angle.
    Favre J; Jolles BM; Aissaoui R; Aminian K
    J Biomech; 2008; 41(5):1029-35. PubMed ID: 18222459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle control in elite alpine skiing.
    Berg HE; Eiken O
    Med Sci Sports Exerc; 1999 Jul; 31(7):1065-7. PubMed ID: 10416571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining the medial-lateral axis of an anatomical femur coordinate system using freehand 3D ultrasound imaging.
    Passmore E; Sangeux M
    Gait Posture; 2016 Mar; 45():211-6. PubMed ID: 26979908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of changes in skiing posture on the kinetics of the knee joint.
    Koyanagi M; Shino K; Yoshimoto Y; Inoue S; Sato M; Nakata K
    Knee Surg Sports Traumatol Arthrosc; 2006 Jan; 14(1):88-93. PubMed ID: 15909205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ankle-joint mobility and standing squat posture in elite junior cross-country skiers. A pilot study.
    Conradsson D; Fridén C; Nilsson-Wikmar L; Ang BO
    J Sports Med Phys Fitness; 2010 Jun; 50(2):132-8. PubMed ID: 20585291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knee angular displacement and extensor muscle activity in telemark skiing and in ski-specific strength exercises.
    Nilsson J; Haugen P
    J Sports Sci; 2004 Apr; 22(4):357-64. PubMed ID: 15161109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the estimation of joint kinematics during gait.
    Ramakrishnan HK; Kadaba MP
    J Biomech; 1991; 24(10):969-77. PubMed ID: 1744154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between jump landing kinematics and peak ACL force during a jump in downhill skiing: a simulation study.
    Heinrich D; van den Bogert AJ; Nachbauer W
    Scand J Med Sci Sports; 2014 Jun; 24(3):e180-7. PubMed ID: 24118532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of eccentric muscle actions in giant slalom racing.
    Berg HE; Eiken O; Tesch PA
    Med Sci Sports Exerc; 1995 Dec; 27(12):1666-70. PubMed ID: 8614323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Which method of hip joint centre localisation should be used in gait analysis?
    Sangeux M; Pillet H; Skalli W
    Gait Posture; 2014; 40(1):20-5. PubMed ID: 24631279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing.
    Blackburn JT; Padua DA
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):313-9. PubMed ID: 18037546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle Activity and Morphology in Slalom Skiing by a Single-Leg Amputee Ski Racer: A Case Study of a Paralympic Athlete.
    Ishige Y; Yoshioka S; Hakamada N; Inaba Y
    J Sports Sci Med; 2021 Sep; 20(3):500-507. PubMed ID: 34267590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a full body inertial measurement system in alpine skiing: a comparison with an optical video based system.
    Krüger A; Edelmann-Nusser J
    J Appl Biomech; 2010 Nov; 26(4):516-21. PubMed ID: 21245513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of hip rotation kinematics retrospectively using functional knee calibration during gait.
    Sangeux M
    Gait Posture; 2018 Jun; 63():171-176. PubMed ID: 29763812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of walking speed variation-induced synchronized dynamic changes in lower limb joint angles and activity of trunk and lower limb muscles with a newly developed gait analysis system.
    Miura K; Kadone H; Koda M; Nakayama K; Kumagai H; Nagashima K; Mataki K; Fujii K; Noguchi H; Funayama T; Abe T; Suzuki K; Yamazaki M
    J Orthop Surg (Hong Kong); 2018; 26(3):2309499018806688. PubMed ID: 30352539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.