BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 28746856)

  • 1. Biphasic Effect of Profilin Impacts the Formin mDia1 Force-Sensing Mechanism in Actin Polymerization.
    Kubota H; Miyazaki M; Ogawa T; Shimozawa T; Kinosita K; Ishiwata S
    Biophys J; 2017 Jul; 113(2):461-471. PubMed ID: 28746856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mDia1 senses both force and torque during F-actin filament polymerization.
    Yu M; Yuan X; Lu C; Le S; Kawamura R; Efremov AK; Zhao Z; Kozlov MM; Sheetz M; Bershadsky A; Yan J
    Nat Commun; 2017 Nov; 8(1):1650. PubMed ID: 29162803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formin mDia1 senses and generates mechanical forces on actin filaments.
    Jégou A; Carlier MF; Romet-Lemonne G
    Nat Commun; 2013; 4():1883. PubMed ID: 23695677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the assembly of ATP- and ADP-actin by formins and profilin.
    Kovar DR; Harris ES; Mahaffy R; Higgs HN; Pollard TD
    Cell; 2006 Jan; 124(2):423-35. PubMed ID: 16439214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of formin processivity by profilin and mechanical tension.
    Cao L; Kerleau M; Suzuki EL; Wioland H; Jouet S; Guichard B; Lenz M; Romet-Lemonne G; Jegou A
    Elife; 2018 May; 7():. PubMed ID: 29799413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational movement of the formin mDia1 along the double helical strand of an actin filament.
    Mizuno H; Higashida C; Yuan Y; Ishizaki T; Narumiya S; Watanabe N
    Science; 2011 Jan; 331(6013):80-3. PubMed ID: 21148346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin filament barbed end elongation with nonmuscle MgATP-actin and MgADP-actin in the presence of profilin.
    Kinosian HJ; Selden LA; Gershman LC; Estes JE
    Biochemistry; 2002 May; 41(21):6734-43. PubMed ID: 12022877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tension modulates actin filament polymerization mediated by formin and profilin.
    Courtemanche N; Lee JY; Pollard TD; Greene EC
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9752-7. PubMed ID: 23716666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How ATP hydrolysis controls filament assembly from profilin-actin: implication for formin processivity.
    Romero S; Didry D; Larquet E; Boisset N; Pantaloni D; Carlier MF
    J Biol Chem; 2007 Mar; 282(11):8435-45. PubMed ID: 17210567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model of formin-associated actin filament elongation.
    Vavylonis D; Kovar DR; O'Shaughnessy B; Pollard TD
    Mol Cell; 2006 Feb; 21(4):455-66. PubMed ID: 16483928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profilin and formin constitute a pacemaker system for robust actin filament growth.
    Funk J; Merino F; Venkova L; Heydenreich L; Kierfeld J; Vargas P; Raunser S; Piel M; Bieling P
    Elife; 2019 Oct; 8():. PubMed ID: 31647411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cooperative jack model of random coil-to-elongation transition of the FH1 domain by profilin binding explains formin motor behavior in actin polymerization.
    Zhao C; Liu C; Hogue CW; Low BC
    FEBS Lett; 2014 Jun; 588(14):2288-93. PubMed ID: 24861497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of profilin on actin critical concentration: a theoretical analysis.
    Yarmola EG; Dranishnikov DA; Bubb MR
    Biophys J; 2008 Dec; 95(12):5544-73. PubMed ID: 18835900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How profilin promotes actin filament assembly in the presence of thymosin beta 4.
    Pantaloni D; Carlier MF
    Cell; 1993 Dec; 75(5):1007-14. PubMed ID: 8252614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational movement of formins evaluated by using single-molecule fluorescence polarization.
    Mizuno H; Watanabe N
    Methods Enzymol; 2014; 540():73-94. PubMed ID: 24630102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanostress resistance involving formin homology proteins: G- and F-actin homeostasis-driven filament nucleation and helical polymerization-mediated actin polymer stabilization.
    Watanabe N; Tohyama K; Yamashiro S
    Biochem Biophys Res Commun; 2018 Nov; 506(2):323-329. PubMed ID: 30309655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mDia1 and formins: screw cap of the actin filament.
    Mizuno H; Watanabe N
    Biophysics (Nagoya-shi); 2012; 8():95-102. PubMed ID: 27493525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin.
    Moseley JB; Sagot I; Manning AL; Xu Y; Eck MJ; Pellman D; Goode BL
    Mol Biol Cell; 2004 Feb; 15(2):896-907. PubMed ID: 14657240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution structural analysis of mammalian profilin 2a complex formation with two physiological ligands: the formin homology 1 domain of mDia1 and the proline-rich domain of VASP.
    Kursula P; Kursula I; Massimi M; Song YH; Downer J; Stanley WA; Witke W; Wilmanns M
    J Mol Biol; 2008 Jan; 375(1):270-90. PubMed ID: 18001770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of profilin on actin-bound nucleotide exchange and actin polymerization dynamics.
    Selden LA; Kinosian HJ; Estes JE; Gershman LC
    Biochemistry; 1999 Mar; 38(9):2769-78. PubMed ID: 10052948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.