BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 28746856)

  • 21. Actin polymerization upon processive capping by formin: a model for slowing and acceleration.
    Shemesh T; Kozlov MM
    Biophys J; 2007 Mar; 92(5):1512-21. PubMed ID: 17158576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of the FH1 domain and profilin in formin-mediated actin-filament elongation and nucleation.
    Paul AS; Pollard TD
    Curr Biol; 2008 Jan; 18(1):9-19. PubMed ID: 18160294
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toxoplasma gondii profilin acts primarily to sequester G-actin while formins efficiently nucleate actin filament formation in vitro.
    Skillman KM; Daher W; Ma CI; Soldati-Favre D; Sibley LD
    Biochemistry; 2012 Mar; 51(12):2486-95. PubMed ID: 22397711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis.
    Romero S; Le Clainche C; Didry D; Egile C; Pantaloni D; Carlier MF
    Cell; 2004 Oct; 119(3):419-29. PubMed ID: 15507212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mouse formin, FRLalpha, slows actin filament barbed end elongation, competes with capping protein, accelerates polymerization from monomers, and severs filaments.
    Harris ES; Li F; Higgs HN
    J Biol Chem; 2004 May; 279(19):20076-87. PubMed ID: 14990563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Latrunculin A Accelerates Actin Filament Depolymerization in Addition to Sequestering Actin Monomers.
    Fujiwara I; Zweifel ME; Courtemanche N; Pollard TD
    Curr Biol; 2018 Oct; 28(19):3183-3192.e2. PubMed ID: 30270183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin.
    Chaudhry F; Guérin C; von Witsch M; Blanchoin L; Staiger CJ
    Mol Biol Cell; 2007 Aug; 18(8):3002-14. PubMed ID: 17538023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The C terminus of formin FMNL3 accelerates actin polymerization and contains a WH2 domain-like sequence that binds both monomers and filament barbed ends.
    Heimsath EG; Higgs HN
    J Biol Chem; 2012 Jan; 287(5):3087-98. PubMed ID: 22094460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin.
    Jégou A; Niedermayer T; Orbán J; Didry D; Lipowsky R; Carlier MF; Romet-Lemonne G
    PLoS Biol; 2011 Sep; 9(9):e1001161. PubMed ID: 21980262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Profilin Interaction with Actin Filament Barbed End Controls Dynamic Instability, Capping, Branching, and Motility.
    Pernier J; Shekhar S; Jegou A; Guichard B; Carlier MF
    Dev Cell; 2016 Jan; 36(2):201-14. PubMed ID: 26812019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Microfluidics Single Filament Assay to Study Formin Control of Actin Assembly.
    Romet-Lemonne G; Guichard B; Jégou A
    Methods Mol Biol; 2018; 1805():75-92. PubMed ID: 29971713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the function of Spire in actin assembly and its synergy with formin and profilin.
    Bosch M; Le KH; Bugyi B; Correia JJ; Renault L; Carlier MF
    Mol Cell; 2007 Nov; 28(4):555-68. PubMed ID: 18042452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model for actin polymerization and the kinetic effects of ATP hydrolysis.
    Pantaloni D; Hill TL; Carlier MF; Korn ED
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7207-11. PubMed ID: 3864156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Mechanical Stimuli on Profilin- and Formin-Mediated Actin Polymerization.
    Yu M; Le S; Efremov AK; Zeng X; Bershadsky A; Yan J
    Nano Lett; 2018 Aug; 18(8):5239-5247. PubMed ID: 29976069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins.
    Higashida C; Kiuchi T; Akiba Y; Mizuno H; Maruoka M; Narumiya S; Mizuno K; Watanabe N
    Nat Cell Biol; 2013 Apr; 15(4):395-405. PubMed ID: 23455479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces.
    Kovar DR; Pollard TD
    Proc Natl Acad Sci U S A; 2004 Oct; 101(41):14725-30. PubMed ID: 15377785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determinants of Formin Homology 1 (FH1) domain function in actin filament elongation by formins.
    Courtemanche N; Pollard TD
    J Biol Chem; 2012 Mar; 287(10):7812-20. PubMed ID: 22247555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energetic requirements for processive elongation of actin filaments by FH1FH2-formins.
    Paul AS; Pollard TD
    J Biol Chem; 2009 May; 284(18):12533-40. PubMed ID: 19251693
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Christensen JR; Craig EW; Glista MJ; Mueller DM; Li Y; Sees JA; Huang S; Suarez C; Mets LJ; Kovar DR; Avasthi P
    Mol Biol Cell; 2019 Dec; 30(26):3123-3135. PubMed ID: 31664873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization.
    Xue B; Leyrat C; Grimes JM; Robinson RC
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):E4596-605. PubMed ID: 25313062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.