BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28746896)

  • 1. Prenatal developmental toxicity testing of petroleum substances: Application of the mouse embryonic stem cell test (EST) to compare in vitro potencies with potencies observed in vivo.
    Kamelia L; Louisse J; de Haan L; Rietjens IMCM; Boogaard PJ
    Toxicol In Vitro; 2017 Oct; 44():303-312. PubMed ID: 28746896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prenatal developmental toxicity testing of petroleum substances using the zebrafish embryotoxicity test.
    Kamelia L; Brugman S; de Haan L; Ketelslegers HB; Rietjens IMCM; Boogaard PJ
    ALTEX; 2019; 36(2):245-260. PubMed ID: 30535508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro prenatal developmental toxicity induced by some petroleum substances is mediated by their 3- to 7-ring PAH constituent with a potential role for the aryl hydrocarbon receptor (AhR).
    Kamelia L; de Haan L; Ketelslegers HB; Rietjens IMCM; Boogaard PJ
    Toxicol Lett; 2019 Oct; 315():64-76. PubMed ID: 31419470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of metabolism in the developmental toxicity of polycyclic aromatic hydrocarbon-containing extracts of petroleum substances.
    Kamelia L; de Haan L; Spenkelink B; Bruyneel B; Ketelslegers HB; Boogaard PJ; Rietjens IMCM
    J Appl Toxicol; 2020 Mar; 40(3):330-341. PubMed ID: 31808176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Endocrine and Dioxin-Like Activity of Extracts of Petroleum Substances in Developmental Toxicity as Detected in a Panel of CALUX Reporter Gene Assays.
    Kamelia L; Louisse J; de Haan L; Maslowska-Gornicz A; Ketelslegers HB; Brouwer A; Rietjens IMCM; Boogaard PJ
    Toxicol Sci; 2018 Aug; 164(2):576-591. PubMed ID: 29726971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicogenomics in vitro as an alternative tool for safety evaluation of petroleum substances and PAHs with regard to prenatal developmental toxicity.
    Tsitou P; Heneweer M; Boogaard PJ
    Toxicol In Vitro; 2015 Mar; 29(2):299-307. PubMed ID: 25481525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative developmental toxicity potencies of retinoids in the embryonic stem cell test compared with their relative potencies in in vivo and two other in vitro assays for developmental toxicity.
    Louisse J; Gönen S; Rietjens IM; Verwei M
    Toxicol Lett; 2011 May; 203(1):1-8. PubMed ID: 21362465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the in vitro developmental toxicity potency of a series of petroleum substance extracts using new approach methodologies (NAMs).
    Fang J; Rietjens IMCM; Carrillo JC; Boogaard PJ; Kamelia L
    Arch Toxicol; 2024 Feb; 98(2):551-565. PubMed ID: 38085275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental toxicity testing of the fume condensate extracts of bitumen and oxidized asphalt in a series of in vitro alternative assays.
    Kamelia L; Rietjens IMCM; Boogaard PJ
    Toxicol In Vitro; 2021 Sep; 75():105195. PubMed ID: 34022403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the ES-D3 cell differentiation assay, combined with the BeWo transport model, to predict relative in vivo developmental toxicity of antifungal compounds.
    Li H; Rietjens IM; Louisse J; Blok M; Wang X; Snijders L; van Ravenzwaay B
    Toxicol In Vitro; 2015 Mar; 29(2):320-8. PubMed ID: 25489799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro embryotoxicity assay based on the disturbance of the differentiation of murine embryonic stem cells into endothelial cells. II. Testing of compounds.
    Festag M; Viertel B; Steinberg P; Sehner C
    Toxicol In Vitro; 2007 Dec; 21(8):1631-40. PubMed ID: 17719739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended evaluation on the ES-D3 cell differentiation assay combined with the BeWo transport model, to predict relative developmental toxicity of triazole compounds.
    Li H; Flick B; Rietjens IM; Louisse J; Schneider S; van Ravenzwaay B
    Arch Toxicol; 2016 May; 90(5):1225-37. PubMed ID: 26047666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining mouse embryonic stem cells and zebrafish embryos to evaluate developmental toxicity of chemical exposure.
    Conde-Vancells J; Vazquez-Chantada M; McCollum CW; Bondesson M; Kalasekar SM; Wlodarczyk BJ; Gustafsson JÅ; Cabrera RM; Finnell RH
    Reprod Toxicol; 2018 Oct; 81():220-228. PubMed ID: 30103011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the embryonic stem cell test and whole embryo culture assay combined with the BeWo placental passage model for predicting the embryotoxicity of azoles.
    Dimopoulou M; Verhoef A; Gomes CA; van Dongen CW; Rietjens IMCM; Piersma AH; van Ravenzwaay B
    Toxicol Lett; 2018 Apr; 286():10-21. PubMed ID: 29337257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistence, bioaccumulation and toxicity-assessment of petroleum UVCBs: A case study on alkylated three-ring PAHs.
    Wassenaar PNH; Verbruggen EMJ
    Chemosphere; 2021 Aug; 276():130113. PubMed ID: 33690043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hand1-Luc embryonic stem cell test (Hand1-Luc EST): a novel rapid and highly reproducible in vitro test for embryotoxicity by measuring cytotoxicity and differentiation toxicity using engineered mouse ES cells.
    Le Coz F; Suzuki N; Nagahori H; Omori T; Saito K
    J Toxicol Sci; 2015 Apr; 40(2):251-61. PubMed ID: 25786529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a screening tool to prioritize testing for the carcinogenic hazard of residual aromatic extracts and related petroleum streams.
    Goyak KO; Kung MH; Chen M; Aldous KK; Freeman JJ
    Toxicol Lett; 2016 Dec; 264():99-105. PubMed ID: 27713023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicological and ecotoxicological properties of gas-to-liquid (GTL) products. 1. Mammalian toxicology.
    Boogaard PJ; Carrillo JC; Roberts LG; Whale GF
    Crit Rev Toxicol; 2017 Feb; 47(2):121-144. PubMed ID: 27559992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of statistical models to determine the relationship between aromatic-ring class profile and repeat-dose and developmental toxicities of high-boiling petroleum substances.
    Nicolich MJ; Simpson BJ; Murray FJ; Roth RN; Gray TM
    Regul Toxicol Pharmacol; 2013 Nov; 67(2 Suppl):S10-29. PubMed ID: 23247261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subchronic and developmental toxicity of aromatic extracts.
    Dalbey WE; McKee RH; Goyak KO; Charlap JH; Parker C; White R
    Int J Toxicol; 2014; 33(1 Suppl):136S-155S. PubMed ID: 24567345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.