BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 28747408)

  • 21. Respiratory muscle power and the slow component of O2 uptake.
    Cross TJ; Winters C; Sheel AW; Sabapathy S
    Med Sci Sports Exerc; 2014 Sep; 46(9):1797-807. PubMed ID: 24561813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptations to endurance training in the healthy elderly: arm cranking versus leg cycling.
    Pogliaghi S; Terziotti P; Cevese A; Balestreri F; Schena F
    Eur J Appl Physiol; 2006 Aug; 97(6):723-31. PubMed ID: 16799819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA
    J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dyspnea on exertion in obese women: association with an increased oxygen cost of breathing.
    Babb TG; Ranasinghe KG; Comeau LA; Semon TL; Schwartz B
    Am J Respir Crit Care Med; 2008 Jul; 178(2):116-23. PubMed ID: 18420968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of endurance training on the VO2-work rate relationship in normoxia and hypoxia.
    Prieur F; Benoit H; Busso T; Castells J; Denis C
    Med Sci Sports Exerc; 2005 Apr; 37(4):664-9. PubMed ID: 15809567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The VO2 response to exhaustive square wave exercise: influence of exercise intensity and mode.
    Draper SB; Wood DM; Fallowfield JL
    Eur J Appl Physiol; 2003 Sep; 90(1-2):92-9. PubMed ID: 12883898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Respiratory muscle training increases cycling endurance without affecting cardiovascular responses to exercise.
    Markov G; Spengler CM; Knöpfli-Lenzin C; Stuessi C; Boutellier U
    Eur J Appl Physiol; 2001 Aug; 85(3-4):233-9. PubMed ID: 11560075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD.
    Langer D; Ciavaglia C; Faisal A; Webb KA; Neder JA; Gosselink R; Dacha S; Topalovic M; Ivanova A; O'Donnell DE
    J Appl Physiol (1985); 2018 Aug; 125(2):381-392. PubMed ID: 29543134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exercise performance improves in patients with COPD due to respiratory muscle endurance training.
    Koppers RJ; Vos PJ; Boot CR; Folgering HT
    Chest; 2006 Apr; 129(4):886-92. PubMed ID: 16608934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of pacing strategy on work done above critical power during high-intensity exercise.
    Chidnok W; Dimenna FJ; Bailey SJ; Wilkerson DP; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2013 Jul; 45(7):1377-85. PubMed ID: 23377832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intensity of Nordic Walking in young females with different peak O2 consumption.
    Jürimäe T; Meema K; Karelson K; Purge P; Jürimäe J
    Clin Physiol Funct Imaging; 2009 Sep; 29(5):330-4. PubMed ID: 19469785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Respiratory muscle endurance training improves exercise performance but does not affect resting blood pressure and sleep in healthy active elderly.
    Stutz J; Casutt S; Spengler CM
    Eur J Appl Physiol; 2022 Dec; 122(12):2515-2531. PubMed ID: 36018510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Cycling vs. Running Training on Endurance Performance in Preparation for Inline Speed Skating.
    Stangier C; Abel T; Hesse C; Claen S; Mierau J; Hollmann W; Strüder HK
    J Strength Cond Res; 2016 Jun; 30(6):1597-606. PubMed ID: 26479024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of respiratory muscle training versus placebo on endurance exercise performance.
    Sonetti DA; Wetter TJ; Pegelow DF; Dempsey JA
    Respir Physiol; 2001 Sep; 127(2-3):185-99. PubMed ID: 11504589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breathing He-O2 attenuates the slow component of O2 uptake kinetics during exercise performed above the respiratory compensation threshold.
    Cross TJ; Sabapathy S; Schneider DA; Haseler LJ
    Exp Physiol; 2010 Jan; 95(1):172-83. PubMed ID: 19717489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological correlates of endurance time variability during constant-workrate cycling exercise in patients with COPD.
    Vivodtzev I; Gagnon P; Pepin V; Saey D; Laviolette L; Brouillard C; Maltais F
    PLoS One; 2011 Feb; 6(2):e17007. PubMed ID: 21386991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of blood donation on O2 uptake on-kinetics, peak O2 uptake and time to exhaustion during severe-intensity cycle exercise in humans.
    Burnley M; Roberts CL; Thatcher R; Doust JH; Jones AM
    Exp Physiol; 2006 May; 91(3):499-509. PubMed ID: 16431932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-linear relationships between central cardiovascular variables and VO2 during incremental cycling exercise in endurance-trained individuals.
    Vella CA; Robergs RA
    J Sports Med Phys Fitness; 2005 Dec; 45(4):452-9. PubMed ID: 16446675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GH responses to two consecutive bouts of respiratory muscle endurance training in healthy adults.
    Sartorio A; Agosti F; Patrizi A; Tringali G; Marazzi N; Giunta M; Muller EE; Rigamonti AE
    J Endocrinol Invest; 2013 Apr; 36(4):255-60. PubMed ID: 22842679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endurance training reduces end-exercise VO2 and muscle use during submaximal cycling.
    Saunders MJ; Evans EM; Arngrimsson SA; Allison JD; Cureton KJ
    Med Sci Sports Exerc; 2003 Feb; 35(2):257-62. PubMed ID: 12569214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.