These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28747668)

  • 1. Deformability based Cell Sorting using Microfluidic Ratchets Enabling Phenotypic Separation of Leukocytes Directly from Whole Blood.
    Guo Q; Duffy SP; Matthews K; Islamzada E; Ma H
    Sci Rep; 2017 Jul; 7(1):6627. PubMed ID: 28747668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.
    Park ES; Jin C; Guo Q; Ang RR; Duffy SP; Matthews K; Azad A; Abdi H; Todenhöfer T; Bazov J; Chi KN; Black PC; Ma H
    Small; 2016 Apr; 12(14):1909-19. PubMed ID: 26917414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell separation based on size and deformability using microfluidic funnel ratchets.
    McFaul SM; Lin BK; Ma H
    Lab Chip; 2012 Jul; 12(13):2369-76. PubMed ID: 22517056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by Plasmodium falciparum.
    Guo Q; Duffy SP; Matthews K; Deng X; Santoso AT; Islamzada E; Ma H
    Lab Chip; 2016 Feb; 16(4):645-54. PubMed ID: 26768227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator.
    Lin BK; McFaul SM; Jin C; Black PC; Ma H
    Biomicrofluidics; 2013; 7(3):34114. PubMed ID: 24404034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Separation of Circulating Tumor Cells Based on Size and Deformability.
    Park ES; Duffy SP; Ma H
    Methods Mol Biol; 2017; 1634():21-32. PubMed ID: 28819838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic liquid filters for leukocyte isolation.
    SooHoo J; Walker G
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6319-22. PubMed ID: 18003466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device.
    Shevkoplyas SS; Yoshida T; Munn LL; Bitensky MW
    Anal Chem; 2005 Feb; 77(3):933-7. PubMed ID: 15679363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low-cost and high-throughput benchtop cell sorter for isolating white blood cells from whole blood.
    Lu X; Tayebi M; Ai Y
    Electrophoresis; 2021 Nov; 42(21-22):2281-2292. PubMed ID: 34010478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Step Microfluidic Purification of White Blood Cells from Whole Blood for Immunophenotyping.
    Kim B; Kim KH; Chang Y; Shin S; Shin EC; Choi S
    Anal Chem; 2019 Oct; 91(20):13230-13236. PubMed ID: 31556985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and Safe Isolation of Human Peripheral Blood B and T Lymphocytes through Spiral Microfluidic Channels.
    Chiu PL; Chang CH; Lin YL; Tsou PH; Li BR
    Sci Rep; 2019 May; 9(1):8145. PubMed ID: 31148602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.
    Li X; Chen W; Liu G; Lu W; Fu J
    Lab Chip; 2014 Jul; 14(14):2565-75. PubMed ID: 24895109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced microfluidic multi-target separation by positive and negative magnetophoresis.
    Khashan S; Odhah AA; Taha M; Alazzam A; Al-Fandi M
    Sci Rep; 2024 Jun; 14(1):13293. PubMed ID: 38858424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole blood leukocytes isolation with microfabricated filter for cell analysis.
    Yu L; Warner P; Warner B; Recktenwald D; Yamanishi D; Guia A; Ghetti A
    Cytometry A; 2011 Dec; 79(12):1009-15. PubMed ID: 22110022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches.
    Dalili A; Samiei E; Hoorfar M
    Analyst; 2018 Dec; 144(1):87-113. PubMed ID: 30402633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic determination of lymphocyte vascular deformability: effects of intracellular complexity and early immune activation.
    Kang N; Guo Q; Islamzada E; Ma H; Scott MD
    Integr Biol (Camb); 2018 Apr; 10(4):207-217. PubMed ID: 29570200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.