These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28747716)

  • 1. Burn-induced muscle metabolic derangements and mitochondrial dysfunction are associated with activation of HIF-1α and mTORC1: Role of protein farnesylation.
    Nakazawa H; Ikeda K; Shinozaki S; Kobayashi M; Ikegami Y; Fu M; Nakamura T; Yasuhara S; Yu YM; Martyn JAJ; Tompkins RG; Shimokado K; Yorozu T; Ito H; Inoue S; Kaneki M
    Sci Rep; 2017 Jul; 7(1):6618. PubMed ID: 28747716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of protein farnesylation in burn-induced metabolic derangements and insulin resistance in mouse skeletal muscle.
    Nakazawa H; Yamada M; Tanaka T; Kramer J; Yu YM; Fischman AJ; Martyn JA; Tompkins RG; Kaneki M
    PLoS One; 2015; 10(1):e0116633. PubMed ID: 25594415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle.
    Nakazawa H; Ikeda K; Shinozaki S; Yasuhara S; Yu YM; Martyn JAJ; Tompkins RG; Yorozu T; Inoue S; Kaneki M
    FEBS Open Bio; 2019 Feb; 9(2):348-363. PubMed ID: 30761259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma.
    Ogunbileje JO; Porter C; Herndon DN; Chao T; Abdelrahman DR; Papadimitriou A; Chondronikola M; Zimmers TA; Reidy PT; Rasmussen BB; Sidossis LS
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E436-48. PubMed ID: 27382037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Farnesysltransferase Inhibitor Prevents Burn Injury-Induced Metabolome Changes in Muscle.
    Nakazawa H; Wong LP; Shelton L; Sadreyev R; Kaneki M
    Metabolites; 2022 Aug; 12(9):. PubMed ID: 36144205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Burn injury-induced alterations in wound inflammation and healing are associated with suppressed hypoxia inducible factor-1alpha expression.
    Schwacha MG; Nickel E; Daniel T
    Mol Med; 2008; 14(9-10):628-33. PubMed ID: 18615157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ER stress and subsequent activated calpain play a pivotal role in skeletal muscle wasting after severe burn injury.
    Ma L; Chu W; Chai J; Shen C; Li D; Wang X
    PLoS One; 2017; 12(10):e0186128. PubMed ID: 29028830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Dependent and Organ-Specific Changes in Mitochondrial Function, Mitochondrial DNA Integrity, Oxidative Stress and Mononuclear Cell Infiltration in a Mouse Model of Burn Injury.
    Szczesny B; Brunyánszki A; Ahmad A; Oláh G; Porter C; Toliver-Kinsky T; Sidossis L; Herndon DN; Szabo C
    PLoS One; 2015; 10(12):e0143730. PubMed ID: 26630679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults.
    Porter C; Herndon DN; Børsheim E; Chao T; Reidy PT; Borack MS; Rasmussen BB; Chondronikola M; Saraf MK; Sidossis LS
    Am J Physiol Endocrinol Metab; 2014 Sep; 307(5):E462-7. PubMed ID: 25074988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Burn injury causes mitochondrial dysfunction in skeletal muscle.
    Padfield KE; Astrakas LG; Zhang Q; Gopalan S; Dai G; Mindrinos MN; Tompkins RG; Rahme LG; Tzika AA
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5368-73. PubMed ID: 15809440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired regeneration in calpain-3 null muscle is associated with perturbations in mTORC1 signaling and defective mitochondrial biogenesis.
    Yalvac ME; Amornvit J; Braganza C; Chen L; Hussain SA; Shontz KM; Montgomery CL; Flanigan KM; Lewis S; Sahenk Z
    Skelet Muscle; 2017 Dec; 7(1):27. PubMed ID: 29241457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DEPTOR Deficiency-Mediated mTORc1 Hyperactivation in Vascular Endothelial Cells Promotes Angiogenesis.
    Ding Y; Shan L; Nai W; Lin X; Zhou L; Dong X; Wu H; Xiao M; Zhou X; Wang L; Li T; Fu Y; Lin Y; Jia C; Dai M; Bai X
    Cell Physiol Biochem; 2018; 46(2):520-531. PubMed ID: 29614494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Murine intramyocellular lipids quantified by NMR act as metabolic biomarkers in burn trauma.
    Tzika AA; Astrakas LG; Cao H; Mintzopoulos D; Zhang Q; Padfield K; Yu H; Mindrinos MN; Rahme LG; Tompkins RG
    Int J Mol Med; 2008 Jun; 21(6):825-32. PubMed ID: 18506378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of HIF-1α gene transfection and HIF-1-activated bone marrow-derived angiogenic cell infusion improves burn wound healing in aged mice.
    Du J; Liu L; Lay F; Wang Q; Dou C; Zhang X; Hosseini SM; Simon A; Rees DJ; Ahmed AK; Sebastian R; Sarkar K; Milner S; Marti GP; Semenza GL; Harmon JW
    Gene Ther; 2013 Nov; 20(11):1070-6. PubMed ID: 23784441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amelioration of ER stress by 4-phenylbutyric acid reduces chronic hypoxia induced cardiac damage and improves hypoxic tolerance through upregulation of HIF-1α.
    Jain K; Suryakumar G; Ganju L; Singh SB
    Vascul Pharmacol; 2016 Aug; 83():36-46. PubMed ID: 27058435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The endoplasmic reticulum stress and the HIF-1 signalling pathways are involved in the neuronal damage caused by chemical hypoxia.
    López-Hernández B; Ceña V; Posadas I
    Br J Pharmacol; 2015 Jun; 172(11):2838-51. PubMed ID: 25625917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mtDNA as a Mediator for Expression of Hypoxia-Inducible Factor 1α and ROS in Hypoxic Neuroblastoma Cells.
    Kuo CW; Tsai MH; Lin TK; Tiao MM; Wang PW; Chuang JH; Chen SD; Liou CW
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28590414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolyl hydroxylase domain 2 deficiency promotes skeletal muscle fiber-type transition via a calcineurin/NFATc1-dependent pathway.
    Shin J; Nunomiya A; Kitajima Y; Dan T; Miyata T; Nagatomi R
    Skelet Muscle; 2016; 6():5. PubMed ID: 26949511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TNF-α-induced NF-κB activation stimulates skeletal muscle glycolytic metabolism through activation of HIF-1α.
    Remels AH; Gosker HR; Verhees KJ; Langen RC; Schols AM
    Endocrinology; 2015 May; 156(5):1770-81. PubMed ID: 25710281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling protein 3 expression and intramyocellular lipid accumulation by NMR following local burn trauma.
    Zhang Q; Cao H; Astrakas LG; Mintzopoulos D; Mindrinos MN; Schulz J; Tompkins RG; Rahme LG; Tzika AA
    Int J Mol Med; 2006 Dec; 18(6):1223-9. PubMed ID: 17089030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.