BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2874806)

  • 1. Modification of Glu 58, an amino acid of the active center of ribonuclease T1, to Gln and Asp.
    Nishikawa S; Morioka H; Fuchimura K; Tanaka T; Uesugi S; Ohtsuka E; Ikehara M
    Biochem Biophys Res Commun; 1986 Jul; 138(2):789-94. PubMed ID: 2874806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase in nucleolytic activity of ribonuclease T1 by substitution of tryptophan 45 for tyrosine 45.
    Nishikawa S; Morioka H; Kimura T; Ueda Y; Tanaka T; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M
    Eur J Biochem; 1988 Apr; 173(2):389-94. PubMed ID: 3129293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inquiries into the structure-function relationship of ribonuclease T1 using chemically synthesized coding sequences.
    Ikehara M; Ohtsuka E; Tokunaga T; Nishikawa S; Uesugi S; Tanaka T; Aoyama Y; Kikyodani S; Fujimoto K; Yanase K
    Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4695-9. PubMed ID: 3014504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two histidine residues are essential for ribonuclease T1 activity as is the case for ribonuclease A.
    Nishikawa S; Morioka H; Kim HJ; Fuchimura K; Tanaka T; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M
    Biochemistry; 1987 Dec; 26(26):8620-4. PubMed ID: 3126807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glu 46 of ribonuclease T1 is an essential residue for the recognition of guanine base.
    Nishikawa S; Kimura T; Morioka H; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M
    Biochem Biophys Res Commun; 1988 Jan; 150(1):68-74. PubMed ID: 3122758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and expression of the native RNase T1 gene and several mutant genes.
    Nishikawa S; Morioka H; Tokunaga T; Aoyama Y; Kikyotani S; Fujimoto K; Yanase K; Tanaka T; Uesugi S; Ohtsuka E
    Nucleic Acids Symp Ser; 1985; (16):287-90. PubMed ID: 3937139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spermine stabilization of folded ribonuclease T1.
    Walz FG; Kitareewan S
    J Biol Chem; 1990 May; 265(13):7127-37. PubMed ID: 1970567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on RNase T1 mutants affecting enzyme catalysis.
    Grunert HP; Zouni A; Beineke M; Quaas R; Georgalis Y; Saenger W; Hahn U
    Eur J Biochem; 1991 Apr; 197(1):203-7. PubMed ID: 1901790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and expression of RNase T1 gene.
    Ikehara M; Ohtsuka E; Uesugi S; Kikyodani T; Aoyama Y; Tokunaga T; Fujimoto K
    Nucleic Acids Symp Ser; 1984; (15):197-200. PubMed ID: 6441155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secretion of recombinant ribonuclease T1 into the periplasmic space of Escherichia coli with the aid of the signal peptide of alkaline phosphatase.
    Fujimura T; Tanaka T; Ohara K; Morioka H; Uesugi S; Ikehara M; Nishikawa S
    FEBS Lett; 1990 Jun; 265(1-2):71-4. PubMed ID: 2114313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribonuclease T1 is active when both catalytic histidines are replaced by aspartate.
    Landt O; Thölke J; Grunert HP; Saenger W; Hahn U
    Biol Chem; 1997 Jun; 378(6):553-8. PubMed ID: 9224937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispensability of glutamic acid 48 and aspartic acid 134 for Mn2+-dependent activity of Escherichia coli ribonuclease HI.
    Tsunaka Y; Haruki M; Morikawa M; Oobatake M; Kanaya S
    Biochemistry; 2003 Mar; 42(11):3366-74. PubMed ID: 12641469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the chemically synthesized gene for ribonuclease T1 in Escherichia coli using a secretion cloning vector.
    Quaas R; McKeown Y; Stanssens P; Frank R; Blöcker H; Hahn U
    Eur J Biochem; 1988 May; 173(3):617-22. PubMed ID: 3131142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate-459 is important for Escherichia coli branching enzyme activity.
    Binderup K; Preiss J
    Biochemistry; 1998 Jun; 37(25):9033-7. PubMed ID: 9636047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proton pore in the Escherichia coli F0F1-ATPase: substitution of glutamate by glutamine at position 219 of the alpha-subunit prevents F0-mediated proton permeability.
    Lightowlers RN; Howitt SM; Hatch L; Gibson F; Cox G
    Biochim Biophys Acta; 1988 Apr; 933(2):241-8. PubMed ID: 2895667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substitution of glutamine for glutamic acid-58 in Escherichia coli thymidylate synthase results in pronounced decreases in catalytic activity and ligand binding.
    Zapf JW; Weir MS; Emerick V; Villafranca JE; Dunlap RB
    Biochemistry; 1993 Sep; 32(36):9274-81. PubMed ID: 8103678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substitutions for Glu-537 of beta-galactosidase from Escherichia coli cause large decreases in catalytic activity.
    Yuan J; Martinez-Bilbao M; Huber RE
    Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):527-31. PubMed ID: 7909660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of two site-specifically mutated human dihydrolipoamide dehydrogenases (His-452----Gln and Glu-457----Gln).
    Kim H; Patel MS
    J Biol Chem; 1992 Mar; 267(8):5128-32. PubMed ID: 1347528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Searching sequence space by definably random mutagenesis: improving the catalytic potency of an enzyme.
    Hermes JD; Blacklow SC; Knowles JR
    Proc Natl Acad Sci U S A; 1990 Jan; 87(2):696-700. PubMed ID: 1967829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the Tyr45Trp mutant of ribonuclease T1 in a complex with 2'-adenylic acid.
    Koellner G; Grunert HP; Landt O; Saenger W
    Eur J Biochem; 1991 Oct; 201(1):199-202. PubMed ID: 1915364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.