These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2874830)

  • 1. Role of phosphate on the ADP-induced hysteretic inhibition of mitochondrial adenosine 5'-triphosphatase. Effects of the natural protein inhibitor.
    Di Pietro A; Fellous G; Godinot C; Gautheron DC
    Biochim Biophys Acta; 1986 Sep; 851(2):283-94. PubMed ID: 2874830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of nucleotides bound to reconstituted Fo-F1 during adenosine 5'-triphosphate synthesis activation or hydrolysis: role of protein inhibitor and hysteretic inhibition.
    Penin F; Di Pietro A; Godinot C; Gautheron DC
    Biochemistry; 1988 Dec; 27(25):8969-74. PubMed ID: 2906804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of mitochondrial F1-ATPase activity by an anti-alpha subunit monoclonal antibody which modifies interactions between catalytic and regulatory sites.
    Moradi-Améli M; Julliard JH; Godinot C
    J Biol Chem; 1989 Jan; 264(3):1361-7. PubMed ID: 2536364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hysteretic inhibition of the bovine heart mitochondrial F1-ATPase is due to saturation of noncatalytic sites with ADP which blocks activation of the enzyme by ATP.
    Jault JM; Allison WS
    J Biol Chem; 1994 Jan; 269(1):319-25. PubMed ID: 8276813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+.
    Wu D; Boyer PD
    Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the natural ATPase inhibitor on the binding of adenine nucleotides and inorganic phosphate to mitochondrial F1-ATPase.
    Klein G; Lunardi J; Vignais PV
    Biochim Biophys Acta; 1981 Jul; 636(2):185-92. PubMed ID: 6456765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of conformational changes in chloroplast coupling factor 1 by 8-anilino-1-naphthalene-sulphonate fluorescence changes.
    Pick U; Finel M
    Eur J Biochem; 1983 Oct; 135(3):559-67. PubMed ID: 6225641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of trypsin to monitor conformational changes of mitochondrial adenosinetriphosphatase induced by nucleotides and phosphate.
    Di Pietro A; Godinot C; Gautheron DC
    Biochemistry; 1983 Feb; 22(4):785-92. PubMed ID: 6220737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ATP dependence of mitochondrial F1-ATPase inactivation by the natural inhibitor protein agrees with the alternating-site binding-change mechanism.
    Milgrom YaM
    FEBS Lett; 1989 Mar; 246(1-2):202-6. PubMed ID: 2523318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the clathrin-coated vesicle V-ATPase with ADP and sodium azide.
    Vasilyeva E; Forgac M
    J Biol Chem; 1998 Sep; 273(37):23823-9. PubMed ID: 9726993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics.
    Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD
    Biochem J; 1982 Jan; 202(1):9-14. PubMed ID: 6211173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of the formation of enzyme-bound ATP from medium inorganic phosphate by mitochondrial F1 adenosinetriphosphatase in the presence of dimethyl sulfoxide.
    Kandpal RP; Stempel KE; Boyer PD
    Biochemistry; 1987 Mar; 26(6):1512-7. PubMed ID: 2885026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition and photoinactivation of the bovine heart mitochondrial F1-ATPase by the cytotoxic agent, dequalinium.
    Zhuo S; Allison WS
    Biochem Biophys Res Commun; 1988 May; 152(3):968-72. PubMed ID: 2897848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circular dichroism and nucleotide and phosphate-induced conformational changes of mitochondrial adenosinetriphosphatase.
    Roux B; Fellous G; Godinot C
    Biochemistry; 1984 Jan; 23(3):534-7. PubMed ID: 6231049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of Mg2+ with F0.F1 mitochondrial ATPase as related to its slow active/inactive transition.
    Bulygin VV; Vinogradov AD
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):149-56. PubMed ID: 1828147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide/H(+)-dependent change in Mg2+ affinity at the ATPase inhibitory site of the mitochondrial F1-F0 ATP synthase.
    Bulygin VV; Syroeshkin AV; Vinogradov AD
    FEBS Lett; 1993 Aug; 328(1-2):193-6. PubMed ID: 8344425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial adenosinetriphosphatase inhibitor protein: reversible interaction with complex V (ATP synthetase complex).
    Galante YM; Wong SY; Hatefi Y
    Biochemistry; 1981 Apr; 20(9):2671-8. PubMed ID: 6263316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase.
    Sakamoto J
    J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATPase of bovine heart mitochondria. Modulation of ITPase activity by ATP, ADP, acetyl ATP and acetyl AMP.
    Thomassen J; Klungsøyr L
    Biochim Biophys Acta; 1983 Apr; 723(1):114-22. PubMed ID: 6131689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.