BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2874835)

  • 1. Cyclic AMP-independent stimulation of steroidogenesis in Y-1 adrenal tumor cells by antimitotic agents.
    Sackett DL; Wolff J
    Biochim Biophys Acta; 1986 Sep; 888(2):163-70. PubMed ID: 2874835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermediate filaments and steroidogenesis in adrenal Y-1 cells: acrylamide stimulation of steroid production.
    Shiver TM; Sackett DL; Knipling L; Wolff J
    Endocrinology; 1992 Jul; 131(1):201-7. PubMed ID: 1319319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of steroidogenesis in a mouse adrenal cell line (Y-1) transformed by simian adenovirus SA-7.
    Lefevre A; Faucon-Biguet N; Mathieu D; Tournier P; Saez JM
    Steroids; 1981 Mar; 31(3):315-25. PubMed ID: 6262249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonism by taxol of effects of microtubule-disrupting agents on lymphocyte cAMP metabolism and cell function.
    Wolberg G; Stopford CR; Zimmerman TP
    Proc Natl Acad Sci U S A; 1984 Jun; 81(11):3496-500. PubMed ID: 6145157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leptin interferes with adrenocorticotropin/3',5'-cyclic adenosine monophosphate (cAMP) signaling, possibly through a Janus kinase 2-phosphatidylinositol 3-kinase/Akt-phosphodiesterase 3-cAMP pathway, to down-regulate cholesterol side-chain cleavage cytochrome P450 enzyme in human adrenocortical NCI-H295 cell line.
    Hsu HT; Chang YC; Chiu YN; Liu CL; Chang KJ; Guo IC
    J Clin Endocrinol Metab; 2006 Jul; 91(7):2761-9. PubMed ID: 16684834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous steroids alter steroidogenesis in cultured Y-1 adrenal tumor cells by actions preceding cyclic AMP.
    Mattson MP; Mrotek JJ
    Steroids; 1985 Jul; 46(1):619-37. PubMed ID: 3016950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Role of microtubules in adrenal gland steroidogenesis].
    Feuilloley M; Netchitaïlo P; Delarue C; Leboulenger F; Benyamina M; Vaudry H
    Pathol Biol (Paris); 1987 Oct; 35(8):1173-7. PubMed ID: 2825101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the mechanism of action of cholera toxin on isolated rat adrenocortical cells. Comparison with the effects of adrenocorticotropin on steroidogenesis and cyclic AMP output.
    Palfreyman JW; Schulster D
    Biochim Biophys Acta; 1975 Oct; 404(2):221-30. PubMed ID: 170975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of steroid secretion by antimicrotubular agents.
    Temple R; Wolff J
    J Biol Chem; 1973 Apr; 248(8):2691-8. PubMed ID: 4348917
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibitory effect of chlordecone and mirex on steroid synthesis in Y-1 cells.
    Warner W
    J Environ Pathol Toxicol Oncol; 1987; 7(4):47-54. PubMed ID: 2439679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of adult bovine adrenocortical cells throughout their life span in tissue culture.
    Hornsby PJ; Gill GN
    Endocrinology; 1978 Mar; 102(3):926-36. PubMed ID: 217609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of cyclic AMP and protein kinase on the steroidogenic action of ACTH, prostaglandin E1 and dibutyryl cyclic AMP in normal adrenal cells and adrenal tumor cells from humans.
    Saez JM; Evain D; Gallet D
    J Cyclic Nucleotide Res; 1978 Aug; 4(4):311-21. PubMed ID: 214468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the effects of ACTH, vasoactive intestinal peptide, and cholera toxin on adrenal cAMP and steroid synthesis.
    Kowal J; Horst I; Pensky J; Alfonzo M
    Ann N Y Acad Sci; 1977 Oct; 297():314-28. PubMed ID: 211905
    [No Abstract]   [Full Text] [Related]  

  • 14. Microtubules, organelle transport, and steroidogenesis in cultured adrenocortical tumor cells. 2. Reversibility of taxol's inhibition of basal and ACTH-induced steroidogenesis is unaccompanied by reversibility of taxol-induced changes in cell ultrastructure.
    Benis R; Mattson P
    Tissue Cell; 1989; 21(5):687-98. PubMed ID: 2575805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steroidogenesis and extracellular cAMP accumulation in adrenal tumor cell cultures.
    Schimmer BP; Zimmerman AE
    Mol Cell Endocrinol; 1976 Mar; 4(4):263-70. PubMed ID: 177321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of tubulin in the steroidogenic response of murine adrenal and rat Leydig cells.
    Clark MA; Shay JW
    Endocrinology; 1981 Dec; 109(6):2261-3. PubMed ID: 6273135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of tetrahydrobiopterin biosynthesis in cultured adrenal cortical tumor cells by adrenocorticotropin and adenosine 3',5'-cyclic monophosphate.
    Duch DS; Woolf JH; Edelstein MP; Viveros OH; Abou-Donia MA; Nichol CA
    Endocrinology; 1986 May; 118(5):1897-905. PubMed ID: 3009141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of taxol, a microtubule-stabilizing drug, on steroidogenic cells.
    Rainey WE; Kramer RE; Mason JI; Shay JW
    J Cell Physiol; 1985 Apr; 123(1):17-24. PubMed ID: 2857725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of calcium in steroidogenesis in fetal zone cells of the human fetal adrenal gland.
    Carr BR; Rainey WE; Mason JI
    J Clin Endocrinol Metab; 1986 Oct; 63(4):913-7. PubMed ID: 3018031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of cyclic nucleotide regulation in protein-kinase-defective adrenal cells through somatic cell fusion.
    Schimmer BP; Horney SJ; Williams SA; Aitchison WA; Doherty PJ
    J Cell Physiol; 1984 Dec; 121(3):483-9. PubMed ID: 6094598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.