These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 28748482)

  • 1. Morphological Analysis of Biocompatibility of Autologous Bone Marrow Mononuclear Cells with Synthetic Polyethylene Terephthalate Scaffold.
    Gilevich IV; Polyakov IS; Porkhanov VA; Chekhonin VP
    Bull Exp Biol Med; 2017 Jul; 163(3):400-404. PubMed ID: 28748482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Experimental Study of Biological Compatibility of Tissue Engineered Tracheal Construct in Laboratory Primates.
    Gilevich IV; Sotnichenko AS; Karal-Ogly DD; Gubareva EA; Kuevda EV; Polyakov IS; Lapin BA; Orlov SV; Porkhanov VA; Chekhonin VP
    Bull Exp Biol Med; 2018 Apr; 164(6):770-774. PubMed ID: 29658077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconstructing tissue engineered trachea: Assessing the role of synthetic scaffolds, segmental replacement and cell seeding on graft performance.
    Dharmadhikari S; Liu L; Shontz K; Wiet M; White A; Goins A; Akula H; Johnson J; Reynolds SD; Breuer CK; Chiang T
    Acta Biomater; 2020 Jan; 102():181-191. PubMed ID: 31707085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study.
    Jungebluth P; Alici E; Baiguera S; Blomberg P; Bozóky B; Crowley C; Einarsson O; Gudbjartsson T; Le Guyader S; Henriksson G; Hermanson O; Juto JE; Leidner B; Lilja T; Liska J; Luedde T; Lundin V; Moll G; Roderburg C; Strömblad S; Sutlu T; Watz E; Seifalian A; Macchiarini P
    Lancet; 2011 Dec; 378(9808):1997-2004. PubMed ID: 22119609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.
    Henrich D; Verboket R; Schaible A; Kontradowitz K; Oppermann E; Brune JC; Nau C; Meier S; Bonig H; Marzi I; Seebach C
    Biomed Res Int; 2015; 2015():762407. PubMed ID: 25802865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors Influencing Poor Outcomes in Synthetic Tissue-Engineered Tracheal Replacement.
    Pepper V; Best CA; Buckley K; Schwartz C; Onwuka E; King N; White A; Dharmadhikari S; Reynolds SD; Johnson J; Grischkan J; Breuer CK; Chiang T
    Otolaryngol Head Neck Surg; 2019 Sep; 161(3):458-467. PubMed ID: 31035858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography.
    Liu Z; Yu N; Holz FG; Yang F; Stanzel BV
    Biomaterials; 2014 Mar; 35(9):2837-50. PubMed ID: 24439407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Tissue-engineered graft constructed by bone marrow mononuclear cells and heterogeneous acellularized tissue matrix: an animal experiment].
    Huang HM; Ma LL; Ren H; Wu SF; Jiang ZM
    Zhonghua Yi Xue Za Zhi; 2007 Dec; 87(48):3440-2. PubMed ID: 18476548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protection of bone marrow, mononuclear, and CD34+ cells by enclosing within the biochemical compound solution during and after transplantation.
    Qujeq D; Abedian Z
    Cell Biochem Funct; 2017 Oct; 35(7):352-357. PubMed ID: 28849597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction.
    Tan Q; Hillinger S; van Blitterswijk CA; Weder W
    Interact Cardiovasc Thorac Surg; 2009 Jan; 8(1):27-30. PubMed ID: 18550604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold.
    Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS
    J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on the construction of small three-dimensional tissue engineered grafts of electrospun poly-ε-caprolactone.
    Zhu GC; Gu YQ; Geng X; Feng ZG; Zhang SW; Ye L; Wang ZG
    J Mater Sci Mater Med; 2015 Feb; 26(2):112. PubMed ID: 25665848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Experimental studies on a new bone tissue engineered scaffold biomaterials combined with cultured marrow stromal stem cells in vitro].
    Pan H; Zheng Q; Guo X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jan; 21(1):65-9. PubMed ID: 17305008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of poly-epsilon-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4.
    Savarino L; Baldini N; Greco M; Capitani O; Pinna S; Valentini S; Lombardo B; Esposito MT; Pastore L; Ambrosio L; Battista S; Causa F; Zeppetelli S; Guarino V; Netti PA
    Biomaterials; 2007 Jul; 28(20):3101-9. PubMed ID: 17412415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dimethylolpropionic acid modification on the characteristics of polyethylene terephthalate fibers.
    Huang Z; Bi L; Zhang Z; Han Y
    Mol Med Rep; 2012 Oct; 6(4):709-15. PubMed ID: 22858692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel strategy to engineer trachea cartilage graft with marrow mesenchymal stem cell macroaggregate and hydrolyzable scaffold.
    Liu L; Wu W; Tuo X; Geng W; Zhao J; Wei J; Yan X; Yang W; Li L; Chen F
    Artif Organs; 2010 May; 34(5):426-33. PubMed ID: 20633157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Polyethylene Terephthalate on Functional Properties of Endothelial and Mesenchymal Cells.
    Lykov AP; Poveshchenko OV; Surovtseva MA; Bondarenko NA; Kim II; Karpenko AA; Pokushalov EA; Karaskov AM
    Bull Exp Biol Med; 2019 Feb; 166(4):580-585. PubMed ID: 30783848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models.
    Ricci C; Mota C; Moscato S; D'Alessandro D; Ugel S; Sartoris S; Bronte V; Boggi U; Campani D; Funel N; Moroni L; Danti S
    Biomatter; 2014; 4():e955386. PubMed ID: 25482337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold.
    Kazemnejad S; Allameh A; Soleimani M; Gharehbaghian A; Mohammadi Y; Amirizadeh N; Jazayery M
    J Gastroenterol Hepatol; 2009 Feb; 24(2):278-87. PubMed ID: 18752558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelialization and Anticoagulation Potential of Surface-Modified PET Intended for Vascular Applications.
    Giol ED; Van Vlierberghe S; Unger RE; Schaubroeck D; Ottevaere H; Thienpont H; Kirkpatrick CJ; Dubruel P
    Macromol Biosci; 2018 Jul; 18(7):e1800125. PubMed ID: 29900675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.