These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28748830)

  • 21. Robust control of CPG-based 3D neuromusculoskeletal walking model.
    Kim Y; Tagawa Y; Obinata G; Hase K
    Biol Cybern; 2011 Oct; 105(3-4):269-82. PubMed ID: 22138897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of a bipedal robot using mutually coupled Rayleigh oscillators.
    Filho AC; Dutra MS; Raptopoulos LS
    Biol Cybern; 2005 Jan; 92(1):1-7. PubMed ID: 15580522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reinforcement learning for a biped robot based on a CPG-actor-critic method.
    Nakamura Y; Mori T; Sato MA; Ishii S
    Neural Netw; 2007 Aug; 20(6):723-35. PubMed ID: 17412559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decentralized control of insect walking: A simple neural network explains a wide range of behavioral and neurophysiological results.
    Schilling M; Cruse H
    PLoS Comput Biol; 2020 Apr; 16(4):e1007804. PubMed ID: 32339162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking.
    Jo S; Massaquoi SG
    Biol Cybern; 2007 Mar; 96(3):279-307. PubMed ID: 17124602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An alternative approach to synthesizing bipedal walking.
    van der Kooij H; Jacobs R; Koopman B; van der Helm F
    Biol Cybern; 2003 Jan; 88(1):46-59. PubMed ID: 12545282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biped Walking Based on Stiffness Optimization and Hierarchical Quadratic Programming.
    Shi X; Gao J; Lu Y; Tian D; Liu Y
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot.
    Ferreira JP; Crisóstomo MM; Coimbra AP
    IEEE Trans Neural Netw; 2009 Dec; 20(12):1885-97. PubMed ID: 19840908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model.
    Kurz MJ; Stergiou N
    Biol Cybern; 2005 Sep; 93(3):213-21. PubMed ID: 16059784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural Networks Trained
    Liu C; Audu ML; Triolo RJ; Quinn RD
    Front Robot AI; 2021; 8():710999. PubMed ID: 34422915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The control system for the Honda humanoid robot.
    Takenaka T
    Age Ageing; 2006 Sep; 35 Suppl 2():ii24-ii26. PubMed ID: 16926199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.
    Park HW; Kim S
    Bioinspir Biomim; 2015 Mar; 10(2):025003. PubMed ID: 25806404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An optimality principle for locomotor central pattern generators.
    Ryu HX; Kuo AD
    Sci Rep; 2021 Jun; 11(1):13140. PubMed ID: 34162903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.
    Fukuoka Y; Fukino K; Habu Y; Mori Y
    Bioinspir Biomim; 2015 Aug; 10(4):046017. PubMed ID: 26241690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of variable-damping control for prosthetic knee based on a simulated biped.
    Zhao J; Berns K; de Souza Baptista R; Bo AP
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650364. PubMed ID: 24187183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.