BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28749072)

  • 21. Donor/acceptor nanoparticle pair-based singlet oxygen channeling homogenous chemiluminescence immunoassay for quantitative determination of bisphenol A.
    Hou C; Zhao L; Geng F; Wang D; Guo LH
    Anal Bioanal Chem; 2016 Dec; 408(30):8795-8804. PubMed ID: 27129973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Luminescence spectroscopy of singlet oxygen enables monitoring of oxygen consumption in biological systems consisting of fatty acids.
    Gollmer A; Regensburger J; Maisch T; Bäumler W
    Phys Chem Chem Phys; 2013 Jul; 15(27):11386-93. PubMed ID: 23740225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A dynamic model for ALA-PDT of skin: simulation of temporal and spatial distributions of ground-state oxygen, photosensitizer and singlet oxygen.
    Liu B; Farrell TJ; Patterson MS
    Phys Med Biol; 2010 Oct; 55(19):5913-32. PubMed ID: 20844331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoactivatable Red Chemiluminescent AIEgen Probe for
    Li J; Hu Y; Li Z; Liu W; Deng T; Li J
    Anal Chem; 2021 Aug; 93(30):10601-10610. PubMed ID: 34296856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response.
    Jarvi MT; Niedre MJ; Patterson MS; Wilson BC
    Photochem Photobiol; 2011; 87(1):223-34. PubMed ID: 21143603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular modulation of excited-state dynamics in a chromophore dyad: differential enhancement of photocytotoxicity targeting cancer cells.
    Kolemen S; Işık M; Kim GM; Kim D; Geng H; Buyuktemiz M; Karatas T; Zhang XF; Dede Y; Yoon J; Akkaya EU
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5340-4. PubMed ID: 25809556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photosensitizer Encryption with Aggregation Enhanced Singlet Oxygen Production.
    Bloyet C; Sciortino F; Matsushita Y; Karr PA; Liyanage A; Jevasuwan W; Fukata N; Maji S; Hynek J; D'Souza F; Shrestha LK; Ariga K; Yamazaki T; Shirahata N; Hill JP; Payne DT
    J Am Chem Soc; 2022 Jun; 144(24):10830-10843. PubMed ID: 35587544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Opening a Gateway for Chemiluminescence Cell Imaging: Distinctive Methodology for Design of Bright Chemiluminescent Dioxetane Probes.
    Green O; Eilon T; Hananya N; Gutkin S; Bauer CR; Shabat D
    ACS Cent Sci; 2017 Apr; 3(4):349-358. PubMed ID: 28470053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fluorescent nanoprobe for real-time monitoring of intracellular singlet oxygen during photodynamic therapy.
    Ping JT; Peng HS; Qin J; You FT; Wang YQ; Chen GX; Song M
    Mikrochim Acta; 2018 Apr; 185(5):269. PubMed ID: 29700623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time luminescence microspectroscopy monitoring of singlet oxygen in individual cells.
    Scholz M; Dědic R; Valenta J; Breitenbach T; Hála J
    Photochem Photobiol Sci; 2014 Aug; 13(8):1203-12. PubMed ID: 24954013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring the lifetime of singlet oxygen in a single cell: addressing the issue of cell viability.
    Hatz S; Lambert JD; Ogilby PR
    Photochem Photobiol Sci; 2007 Oct; 6(10):1106-16. PubMed ID: 17914485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endoplasmic Reticulum-Localized Iridium(III) Complexes as Efficient Photodynamic Therapy Agents via Protein Modifications.
    Nam JS; Kang MG; Kang J; Park SY; Lee SJ; Kim HT; Seo JK; Kwon OH; Lim MH; Rhee HW; Kwon TH
    J Am Chem Soc; 2016 Aug; 138(34):10968-77. PubMed ID: 27494510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Singlet oxygen and ROS in a new light: low-dose subcellular photodynamic treatment enhances proliferation at the single cell level.
    Blázquez-Castro A; Breitenbach T; Ogilby PR
    Photochem Photobiol Sci; 2014 Sep; 13(9):1235-40. PubMed ID: 25051122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High optical-throughput spectroscopic singlet oxygen and photosensitizer luminescence dosimeter for monitoring of photodynamic therapy.
    Zhao Y; Moritz T; Hinds MF; Gunn JR; Shell JR; Pogue BW; Davis SJ
    J Biophotonics; 2021 Nov; 14(11):e202100088. PubMed ID: 34323374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-gated luminescent probes for lysosomal singlet oxygen: Synthesis, characterizations and bioimaging applications.
    Huang Y; Song B; Chen K; Kong D; Yuan J
    Anal Chim Acta; 2024 Jan; 1287():342063. PubMed ID: 38182371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death.
    Fujii J; Soma Y; Matsuda Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Photosensitized Singlet Oxygen (
    Aerssens D; Cadoni E; Tack L; Madder A
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alternative methods of photodynamic therapy and oxygen consumption measurements-A review.
    Bartusik-Aebisher D; Ożóg Ł; Aebisher D
    Biomed Pharmacother; 2021 Feb; 134():111095. PubMed ID: 33341048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-gated luminescence imaging of singlet oxygen photoinduced by fluoroquinolones and functionalized graphenes in Daphnia magna.
    Luo T; Chen J; Song B; Ma H; Fu Z; Peijnenburg WJGM
    Aquat Toxicol; 2017 Oct; 191():105-112. PubMed ID: 28810137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy.
    Kim S; Tachikawa T; Fujitsuka M; Majima T
    J Am Chem Soc; 2014 Aug; 136(33):11707-15. PubMed ID: 25075870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.