BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28749131)

  • 1. Lysine Deacetylases Exhibit Distinct Changes in Activity Profiles Due to Fluorophore Conjugation of Substrates.
    Toro TB; Bryant JR; Watt TJ
    Biochemistry; 2017 Aug; 56(34):4549-4558. PubMed ID: 28749131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysine Deacetylase Substrate Selectivity: A Dynamic Ionic Interaction Specific to KDAC8.
    Toro TB; Swanier JS; Bezue JA; Broussard CG; Watt TJ
    Biochemistry; 2021 Aug; 60(33):2524-2536. PubMed ID: 34357750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KDAC8 substrate specificity quantified by a biologically relevant, label-free deacetylation assay.
    Toro TB; Watt TJ
    Protein Sci; 2015 Dec; 24(12):2020-32. PubMed ID: 26402585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysine Deacetylase Substrate Selectivity: Distinct Interaction Surfaces Drive Positive and Negative Selection for Residues Following Acetyllysine.
    Toro TB; Bornes KE; Watt TJ
    Biochemistry; 2023 May; 62(9):1464-1483. PubMed ID: 37043688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical review of non-histone human substrates of metal-dependent lysine deacetylases.
    Toro TB; Watt TJ
    FASEB J; 2020 Oct; 34(10):13140-13155. PubMed ID: 32862458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine deacetylase (KDAC) regulatory pathways: an alternative approach to selective modulation.
    Van Dyke MW
    ChemMedChem; 2014 Mar; 9(3):511-22. PubMed ID: 24449617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous expression of inactive lysine deacetylases reveals deacetylation-dependent cellular mechanisms.
    Toro TB; Skripnikova EV; Bornes KE; Zhang K; Watt TJ
    PLoS One; 2023; 18(9):e0291779. PubMed ID: 37721967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KDAC8 with High Basal Velocity Is Not Activated by N-Acetylthioureas.
    Toro TB; Pingali S; Nguyen TP; Garrett DS; Dodson KA; Nichols KA; Haynes RA; Payton-Stewart F; Watt TJ
    PLoS One; 2016; 11(1):e0146900. PubMed ID: 26745872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of human SIRT1 activation by resveratrol.
    Borra MT; Smith BC; Denu JM
    J Biol Chem; 2005 Apr; 280(17):17187-95. PubMed ID: 15749705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Sensitive Lysine Deacetylase Assay Based on Acetylated Firefly Luciferase.
    Spinck M; Ecke M; Sievers S; Neumann H
    Biochemistry; 2018 Jul; 57(26):3552-3555. PubMed ID: 29851343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Directed Evolution System for Lysine Deacetylases.
    Spinck M; Ecke M; Schiller D; Neumann H
    Methods Mol Biol; 2021; 2247():319-337. PubMed ID: 33301126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assays to Study Enzymatic and Non-Enzymatic Protein Lysine Acetylation In Vitro.
    Graf LG; Vogt R; Blasl AT; Qin C; Schulze S; Zühlke D; Sievers S; Lammers M
    Curr Protoc; 2021 Nov; 1(11):e277. PubMed ID: 34748287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of metal-dependent lysine deacetylases with consistently high activity.
    Toro TB; Painter RG; Haynes RA; Glotser EY; Bratton MR; Bryant JR; Nichols KA; Matthew-Onabanjo AN; Matthew AN; Bratcher DR; Perry CD; Watt TJ
    Protein Expr Purif; 2018 Jan; 141():1-6. PubMed ID: 28843507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK.
    Lin YY; Kiihl S; Suhail Y; Liu SY; Chou YH; Kuang Z; Lu JY; Khor CN; Lin CL; Bader JS; Irizarry R; Boeke JD
    Nature; 2012 Feb; 482(7384):251-5. PubMed ID: 22318606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of Mammalian Enzymatic Deacylation Reactions in Live Bacteria Using Native Acylated Substrates.
    Avrahami EM; Levi S; Zajfman E; Regev C; Ben-David O; Arbely E
    ACS Synth Biol; 2018 Oct; 7(10):2348-2354. PubMed ID: 30207693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-scale analysis of regulatory protein acetylation enzymes from photosynthetic eukaryotes.
    Uhrig RG; Schläpfer P; Mehta D; Hirsch-Hoffmann M; Gruissem W
    BMC Genomics; 2017 Jul; 18(1):514. PubMed ID: 28679357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Class I lysine deacetylases promote glucocorticoid-induced transcriptional repression through functional interaction with LSD1.
    Patrick NM; Griggs CA; Icenogle AL; Gilpatrick MM; Kadiyala V; Jaime-Frias R; Smith CL
    J Steroid Biochem Mol Biol; 2017 Mar; 167():1-13. PubMed ID: 27645313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide arrays identify isoform-selective substrates for profiling endogenous lysine deacetylase activity.
    Gurard-Levin ZA; Kilian KA; Kim J; Bähr K; Mrksich M
    ACS Chem Biol; 2010 Sep; 5(9):863-73. PubMed ID: 20849068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine deacetylases and mitochondrial dynamics in neurodegeneration.
    Guedes-Dias P; Oliveira JM
    Biochim Biophys Acta; 2013 Aug; 1832(8):1345-59. PubMed ID: 23579074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorometric assay of SIRT1 deacetylation activity through quantification of nicotinamide adenine dinucleotide.
    Feng Y; Wu J; Chen L; Luo C; Shen X; Chen K; Jiang H; Liu D
    Anal Biochem; 2009 Dec; 395(2):205-10. PubMed ID: 19682970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.