BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28749165)

  • 1. Impact of robotic ultrasound image guidance on plan quality in SBRT of the prostate.
    Gerlach S; Kuhlemann I; Ernst F; Fürweger C; Schlaefer A
    Br J Radiol; 2017 Oct; 90(1078):20160926. PubMed ID: 28749165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic ultrasound-guided SBRT of the prostate: feasibility with respect to plan quality.
    Gerlach S; Kuhlemann I; Jauer P; Bruder R; Ernst F; Fürweger C; Schlaefer A
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):149-159. PubMed ID: 27406743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and optimization of the robot setup for robotic-ultrasound-guided radiation therapy.
    Schlüter M; Gerlach S; Fürweger C; Schlaefer A
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1379-1387. PubMed ID: 31172439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing robot motion for robotic ultrasound-guided radiation therapy.
    Schlüter M; Fürweger C; Schlaefer A
    Phys Med Biol; 2019 Oct; 64(19):195012. PubMed ID: 31422960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing Configurations for 7-DoF Robotic Ultrasound Guidance in Radiotherapy of the Prostate.
    Schluter M; Furweger C; Schlaefer A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6983-6986. PubMed ID: 31947445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the beam direction search space in computerized non-coplanar beam angle optimization for IMRT-prostate SBRT.
    Rossi L; Breedveld S; Heijmen BJ; Voet PW; Lanconelli N; Aluwini S
    Phys Med Biol; 2012 Sep; 57(17):5441-58. PubMed ID: 22864234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic intrafractional US guidance for liver SABR: System design, beam avoidance, and clinical imaging.
    Schlosser J; Gong RH; Bruder R; Schweikard A; Jang S; Henrie J; Kamaya A; Koong A; Chang DT; Hristov D
    Med Phys; 2016 Nov; 43(11):5951. PubMed ID: 27806580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards fast adaptive replanning by constrained reoptimization for intra-fractional non-periodic motion during robotic SBRT.
    Gerlach S; Hofmann T; Fürweger C; Schlaefer A
    Med Phys; 2023 Jul; 50(7):4613-4622. PubMed ID: 36951392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery.
    Schlosser J; Salisbury K; Hristov D
    Med Phys; 2010 Dec; 37(12):6357-67. PubMed ID: 21302793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AI-based optimization for US-guided radiation therapy of the prostate.
    Gerlach S; Hofmann T; Fürweger C; Schlaefer A
    Int J Comput Assist Radiol Surg; 2022 Nov; 17(11):2023-2032. PubMed ID: 35593988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncoplanar Beam Angle Class Solutions to Replace Time-Consuming Patient-Specific Beam Angle Optimization in Robotic Prostate Stereotactic Body Radiation Therapy.
    Rossi L; Breedveld S; Aluwini S; Heijmen B
    Int J Radiat Oncol Biol Phys; 2015 Jul; 92(4):762-70. PubMed ID: 26104931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetric Comparison and Evaluation of 4 Stereotactic Body Radiotherapy Techniques for the Treatment of Prostate Cancer.
    Seppälä J; Suilamo S; Tenhunen M; Sailas L; Virsunen H; Kaleva E; Keyriläinen J
    Technol Cancer Res Treat; 2017 Apr; 16(2):238-245. PubMed ID: 28279147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrafraction prostate translations and rotations during hypofractionated robotic radiation surgery: dosimetric impact of correction strategies and margins.
    van de Water S; Valli L; Aluwini S; Lanconelli N; Heijmen B; Hoogeman M
    Int J Radiat Oncol Biol Phys; 2014 Apr; 88(5):1154-60. PubMed ID: 24661668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfraction Anatomical Variability Can Lead to Significantly Increased Rectal Dose for Patients Undergoing Stereotactic Body Radiotherapy for Prostate Cancer.
    Wahl M; Descovich M; Shugard E; Pinnaduwage D; Sudhyadhom A; Chang A; Roach M; Gottschalk A; Chen J
    Technol Cancer Res Treat; 2017 Apr; 16(2):178-187. PubMed ID: 27199276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of case-based beam generation for robotic radiosurgery.
    Schlaefer A; Dieterich S
    Artif Intell Med; 2011 Jun; 52(2):67-75. PubMed ID: 21683563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective treatment plan-specific action limits for real-time intrafractional monitoring in surface image guided radiosurgery.
    Yock AD; Pawlicki T; Kim GY
    Med Phys; 2016 Jul; 43(7):4342. PubMed ID: 27370149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrafractional Tracking Accuracy of a Transperineal Ultrasound Image Guidance System for Prostate Radiotherapy.
    Yu AS; Najafi M; Hristov DH; Phillips T
    Technol Cancer Res Treat; 2017 Dec; 16(6):1067-1078. PubMed ID: 29332454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems.
    Liu X; Wiersma RD
    PLoS One; 2019; 14(1):e0210385. PubMed ID: 30633766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of online/offline image guidance/adaptation approaches for prostate cancer radiation therapy.
    Qin A; Sun Y; Liang J; Yan D
    Int J Radiat Oncol Biol Phys; 2015 Apr; 91(5):1026-33. PubMed ID: 25832693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable circular collimator in robotic radiosurgery: a time-efficient alternative to a mini-multileaf collimator?
    van de Water S; Hoogeman MS; Breedveld S; Nuyttens JJ; Schaart DR; Heijmen BJ
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(3):863-70. PubMed ID: 21377286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.