These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 28749435)

  • 41. DHPLC analysis of potassium ion channel genes in congenital long QT syndrome.
    Jongbloed R; Marcelis C; Velter C; Doevendans P; Geraedts J; Smeets H
    Hum Mutat; 2002 Nov; 20(5):382-91. PubMed ID: 12402336
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Latent pathogenicity of the G38S polymorphism of KCNE1 K
    Yamaguchi Y; Mizumaki K; Hata Y; Sakamoto T; Nakatani Y; Kataoka N; Ichida F; Inoue H; Nishida N
    Heart Vessels; 2017 Feb; 32(2):186-192. PubMed ID: 27255646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HERG mutation predicts short QT based on channel kinetics but causes long QT by heterotetrameric trafficking deficiency.
    Paulussen AD; Raes A; Jongbloed RJ; Gilissen RA; Wilde AA; Snyders DJ; Smeets HJ; Aerssens J
    Cardiovasc Res; 2005 Aug; 67(3):467-75. PubMed ID: 15958262
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural Modelling of KCNQ1 and KCNH2 Double Mutant Proteins, Identified in Two Severe Long QT Syndrome Cases, Reveals New Insights into Cardiac Channelopathies.
    Agudelo WA; Gil-Quiñones SR; Fonseca A; Arenas A; Castro L; Sierra-Díaz DC; Patarroyo MA; Laissue P; Suárez CF; Cabrera R
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884666
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [KCNQ1, KCNH2, KCNE1 and KCNE2 potassium channels gene variants in sudden manhood death syndrome].
    Zhao QH; Liu C; Lu LW; Lü GL; Liu H; Tang SB; Quan L; Cheng JD
    Fa Yi Xue Za Zhi; 2012 Oct; 28(5):337-41, 346. PubMed ID: 23213782
    [TBL] [Abstract][Full Text] [Related]  

  • 46. D85N, a KCNE1 polymorphism, is a disease-causing gene variant in long QT syndrome.
    Nishio Y; Makiyama T; Itoh H; Sakaguchi T; Ohno S; Gong YZ; Yamamoto S; Ozawa T; Ding WG; Toyoda F; Kawamura M; Akao M; Matsuura H; Kimura T; Kita T; Horie M
    J Am Coll Cardiol; 2009 Aug; 54(9):812-9. PubMed ID: 19695459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic variants of potassium voltage-gated channel genes (KCNQ1, KCNH2, and KCNE1) affected the risk of atrial fibrillation in elderly patients.
    Li L; Shen C; Yao Z; Liang J; Huang C
    Genet Test Mol Biomarkers; 2015 Jul; 19(7):359-65. PubMed ID: 26066992
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tbx20 controls the expression of the KCNH2 gene and of hERG channels.
    Caballero R; Utrilla RG; Amorós I; Matamoros M; Pérez-Hernández M; Tinaquero D; Alfayate S; Nieto-Marín P; Guerrero-Serna G; Liu QH; Ramos-Mondragón R; Ponce-Balbuena D; Herron T; Campbell KF; Filgueiras-Rama D; Peinado R; López-Sendón JL; Jalife J; Delpón E; Tamargo J
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):E416-E425. PubMed ID: 28049825
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population.
    Gouas L; Nicaud V; Berthet M; Forhan A; Tiret L; Balkau B; Guicheney P;
    Eur J Hum Genet; 2005 Nov; 13(11):1213-22. PubMed ID: 16132053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular diagnostics of families with long-QT syndrome.
    Moric-Janiszewska E; Głowacka M
    Cardiol J; 2012; 19(2):159-67. PubMed ID: 22461049
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A trafficking-deficient KCNQ1 mutation, T587M, causes a severe phenotype of long QT syndrome by interfering with intracellular hERG transport.
    Wu J; Sakaguchi T; Takenaka K; Toyoda F; Tsuji K; Matsuura H; Horie M
    J Cardiol; 2019 May; 73(5):343-350. PubMed ID: 30591322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Atrioventricular block-induced Torsades de Pointes with clinical and molecular backgrounds similar to congenital long QT syndrome.
    Oka Y; Itoh H; Ding WG; Shimizu W; Makiyama T; Ohno S; Nishio Y; Sakaguchi T; Miyamoto A; Kawamura M; Matsuura H; Horie M
    Circ J; 2010 Nov; 74(12):2562-71. PubMed ID: 20975234
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel intracellular transport-refractory mutations in KCNH2 identified in patients with symptomatic long QT syndrome.
    Fukumoto D; Ding WG; Wada Y; Fujii Y; Ichikawa M; Takayama K; Fukuyama M; Kato K; Itoh H; Makiyama T; Omatsu-Kanbe M; Matsuura H; Horie M; Ohno S
    J Cardiol; 2018 Apr; 71(4):401-408. PubMed ID: 29146210
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contribution of a KCNH2 variant in genotyped long QT syndrome: Romano-Ward syndrome under double mutations and acquired long QT syndrome under heterozygote.
    Fujii Y; Matsumoto Y; Hayashi K; Ding WG; Tomita Y; Fukumoto D; Wada Y; Ichikawa M; Sonoda K; Ozawa J; Makiyama T; Ohno S; Yamagishi M; Matsuura H; Horie M; Itoh H
    J Cardiol; 2017 Jul; 70(1):74-79. PubMed ID: 27816319
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional testing for variant prioritization in a family with long QT syndrome.
    Najari Beidokhti M; Bertalovitz AC; Ji W; McCormack J; Jeffries L; Sempou E; Khokha MK; McDonald TV; Lakhani SA
    Mol Genet Genomics; 2021 Jul; 296(4):823-836. PubMed ID: 33876311
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant.
    Tiron C; Campuzano O; Pérez-Serra A; Mademont I; Coll M; Allegue C; Iglesias A; Partemi S; Striano P; Oliva A; Brugada R
    Seizure; 2015 Feb; 25():65-7. PubMed ID: 25645639
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Latent genetic backgrounds and molecular pathogenesis in drug-induced long-QT syndrome.
    Itoh H; Sakaguchi T; Ding WG; Watanabe E; Watanabe I; Nishio Y; Makiyama T; Ohno S; Akao M; Higashi Y; Zenda N; Kubota T; Mori C; Okajima K; Haruna T; Miyamoto A; Kawamura M; Ishida K; Nagaoka I; Oka Y; Nakazawa Y; Yao T; Jo H; Sugimoto Y; Ashihara T; Hayashi H; Ito M; Imoto K; Matsuura H; Horie M
    Circ Arrhythm Electrophysiol; 2009 Oct; 2(5):511-23. PubMed ID: 19843919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Relationship between congenital long QT syndrome and Brugada syndrome gene mutation].
    Du R; Ren FX; Yang JG; Yuan GH; Zhang SY; Kang CL; Li W; Gui L; Li J
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2005 Jun; 27(3):289-94. PubMed ID: 16038262
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A molecular mechanism for adrenergic-induced long QT syndrome.
    Wu J; Naiki N; Ding WG; Ohno S; Kato K; Zang WJ; Delisle BP; Matsuura H; Horie M
    J Am Coll Cardiol; 2014 Mar; 63(8):819-27. PubMed ID: 24184248
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Asymmetry of parental origin in long QT syndrome: preferential maternal transmission of KCNQ1 variants linked to channel dysfunction.
    Itoh H; Berthet M; Fressart V; Denjoy I; Maugenre S; Klug D; Mizusawa Y; Makiyama T; Hofman N; Stallmeyer B; Zumhagen S; Shimizu W; Wilde AA; Schulze-Bahr E; Horie M; Tezenas du Montcel S; Guicheney P
    Eur J Hum Genet; 2016 Aug; 24(8):1160-6. PubMed ID: 26669661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.