These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
544 related articles for article (PubMed ID: 28749960)
21. A productivity bottleneck in the Baltic herring (Clupea harengus membras): Early life-history processes and recruitment variability. Arula T; Simm M; Herkül K; Kotta J; Houde ED Mar Environ Res; 2022 May; 177():105638. PubMed ID: 35533438 [TBL] [Abstract][Full Text] [Related]
22. Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis. Jayasundara N; Somero GN J Exp Biol; 2013 Jun; 216(Pt 11):2111-21. PubMed ID: 23678101 [TBL] [Abstract][Full Text] [Related]
23. Temperature-dependent physiological and biochemical responses of the marine medaka Oryzias melastigma with consideration of both low and high thermal extremes. Li AJ; Leung PT; Bao VW; Lui GC; Leung KM J Therm Biol; 2015 Dec; 54():98-105. PubMed ID: 26615731 [TBL] [Abstract][Full Text] [Related]
24. The time course of acclimation of critical thermal maxima is modulated by the magnitude of temperature change and thermal daily fluctuations. Turriago JL; Tejedo M; Hoyos JM; Camacho A; Bernal MH J Therm Biol; 2023 May; 114():103545. PubMed ID: 37290261 [TBL] [Abstract][Full Text] [Related]
25. Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny. Ruthsatz K; Dausmann KH; Peck MA; Glos J J Exp Zool A Ecol Integr Physiol; 2022 Jun; 337(5):477-490. PubMed ID: 35226414 [TBL] [Abstract][Full Text] [Related]
26. Thermal tolerance limits and physiological traits as indicators of Hediste diversicolor's acclimation capacity to global and local change drivers. Fernandes JF; Calado R; Jerónimo D; Madeira D J Therm Biol; 2023 May; 114():103577. PubMed ID: 37263039 [TBL] [Abstract][Full Text] [Related]
28. The acute temperature tolerance of green sturgeon (Acipenser medirostris) and the effect of environmental salinity. Sardella BA; Sanmarti E; Kültz D J Exp Zool A Ecol Genet Physiol; 2008 Oct; 309(8):477-83. PubMed ID: 18615462 [TBL] [Abstract][Full Text] [Related]
29. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming. Rosa R; Lopes AR; Pimentel M; Faleiro F; Baptista M; Trübenbach K; Narciso L; Dionísio G; Pegado MR; Repolho T; Calado R; Diniz M Glob Chang Biol; 2014 Oct; 20(10):3068-79. PubMed ID: 24771544 [TBL] [Abstract][Full Text] [Related]
30. How plastic are upper thermal limits? A comparative study in tsetse (family: Glossinidae) and wider Diptera. Weaving H; Terblanche JS; English S J Therm Biol; 2023 Dec; 118():103745. PubMed ID: 37924664 [TBL] [Abstract][Full Text] [Related]
31. Maximum thermal limits of coral reef damselfishes are size dependent and resilient to near-future ocean acidification. Clark TD; Roche DG; Binning SA; Speers-Roesch B; Sundin J J Exp Biol; 2017 Oct; 220(Pt 19):3519-3526. PubMed ID: 28754716 [TBL] [Abstract][Full Text] [Related]
32. Short-term acclimation dynamics in a coldwater fish. Stewart EMC; Frasca VR; Wilson CC; Raby GD J Therm Biol; 2023 Feb; 112():103482. PubMed ID: 36796924 [TBL] [Abstract][Full Text] [Related]
33. Physiological responses to short-term thermal stress in mayfly ( Kim KS; Chou H; Funk DH; Jackson JK; Sweeney BW; Buchwalter DB J Exp Biol; 2017 Jul; 220(Pt 14):2598-2605. PubMed ID: 28724704 [TBL] [Abstract][Full Text] [Related]
34. Early arrival of spring-spawning Atlantic herring Clupea harengus at their spawning ground in the Kiel Fjord, western Baltic, relates to increasing winter seawater temperature. Ory NC; Gröger JP; Lehmann A; Mittermayer F; Neuheimer AB; Clemmesen C J Fish Biol; 2024 Sep; 105(3):766-778. PubMed ID: 38859548 [TBL] [Abstract][Full Text] [Related]
35. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance. Allen JL; Chown SL; Janion-Scheepers C; Clusella-Trullas S Conserv Physiol; 2016; 4(1):cow053. PubMed ID: 27933165 [TBL] [Abstract][Full Text] [Related]
36. Effects of temperature acclimation on the upper thermal tolerance of two Arctic fishes. Waterbury CR; Sutton TM; Kelley AL; López JA Conserv Physiol; 2024; 12(1):coae001. PubMed ID: 38343721 [TBL] [Abstract][Full Text] [Related]
37. How much starvation, desiccation and oxygen depletion can Drosophila melanogaster tolerate before its upper thermal limits are affected? Manenti T; Cunha TR; Sørensen JG; Loeschcke V J Insect Physiol; 2018; 111():1-7. PubMed ID: 30273554 [TBL] [Abstract][Full Text] [Related]
38. The acute and incremental thermal tolerance of Atlantic cod (Gadus morhua) families under normoxia and mild hypoxia. Zanuzzo FS; Bailey JA; Garber AF; Gamperl AK Comp Biochem Physiol A Mol Integr Physiol; 2019 Jul; 233():30-38. PubMed ID: 30930205 [TBL] [Abstract][Full Text] [Related]
39. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. Kubisch EL; Fernández JB; Ibargüengoytía NR J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700 [TBL] [Abstract][Full Text] [Related]
40. Effective practices for thermal tolerance polygon experiments using mottled catfish Corydoras paleatus. Conte M; de Campos DF; Eme J J Therm Biol; 2023 Jul; 115():103616. PubMed ID: 37437371 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]