These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 28750347)

  • 1. Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays.
    Peng X; Wu H; Song K; Shi J
    Neural Netw; 2017 Oct; 94():46-54. PubMed ID: 28750347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. O(t
    Chen J; Chen B; Zeng Z
    Neural Netw; 2018 Apr; 100():10-24. PubMed ID: 29427959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global Mittag-Leffler synchronization of fractional-order neural networks with discontinuous activations.
    Ding Z; Shen Y; Wang L
    Neural Netw; 2016 Jan; 73():77-85. PubMed ID: 26562442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses.
    Pratap A; Raja R; Sowmiya C; Bagdasar O; Cao J; Rajchakit G
    Neural Netw; 2018 Jul; 103():128-141. PubMed ID: 29677558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Nonfragile Synchronization in Finite Time for Fractional-Order Discontinuous Neural Networks With Nonlinear Growth Activations.
    Peng X; Wu H; Cao J
    IEEE Trans Neural Netw Learn Syst; 2019 Jul; 30(7):2123-2137. PubMed ID: 30442618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-time synchronization of fractional-order memristor-based neural networks with time delays.
    Velmurugan G; Rakkiyappan R; Cao J
    Neural Netw; 2016 Jan; 73():36-46. PubMed ID: 26547242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes.
    Ding X; Cao J; Zhao X; Alsaadi FE
    Proc Math Phys Eng Sci; 2017 Aug; 473(2204):20170322. PubMed ID: 28878565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons.
    Yang X; Li C; Song Q; Chen J; Huang J
    Neural Netw; 2018 Sep; 105():88-103. PubMed ID: 29793129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.
    Stamova I; Stamov G
    Neural Netw; 2017 Dec; 96():22-32. PubMed ID: 28950105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay.
    You X; Song Q; Zhao Z
    Neural Netw; 2020 Feb; 122():382-394. PubMed ID: 31785539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks.
    Chen J; Zeng Z; Jiang P
    Neural Netw; 2014 Mar; 51():1-8. PubMed ID: 24325932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays.
    Li HL; Hu C; Cao J; Jiang H; Alsaedi A
    Neural Netw; 2019 Oct; 118():102-109. PubMed ID: 31254765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple types of synchronization analysis for discontinuous Cohen-Grossberg neural networks with time-varying delays.
    Li J; Jiang H; Hu C; Yu Z
    Neural Netw; 2018 Mar; 99():101-113. PubMed ID: 29414532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronization analysis of coupled fractional-order neural networks with time-varying delays.
    Li B; Cheng X
    Math Biosci Eng; 2023 Jul; 20(8):14846-14865. PubMed ID: 37679162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks.
    Yang S; Yu J; Hu C; Jiang H
    Neural Netw; 2018 Aug; 104():104-113. PubMed ID: 29753177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization in finite time for variable-order fractional complex dynamic networks with multi-weights and discontinuous nodes based on sliding mode control strategy.
    Li X; Wu H; Cao J
    Neural Netw; 2021 Jul; 139():335-347. PubMed ID: 33887583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Dissipativity and Quasi-Mittag-Leffler Synchronization of Fractional-Order Discontinuous Complex-Valued Neural Networks.
    Ding Z; Zhang H; Zeng Z; Yang L; Li S
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4139-4152. PubMed ID: 34739381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Group Consensus in Finite Time for Fractional Multiagent Systems With Discontinuous Inherent Dynamics Subject to Hölder Growth.
    Zhang Y; Wu H; Cao J
    IEEE Trans Cybern; 2022 Jun; 52(6):4161-4172. PubMed ID: 33055045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations.
    Cai Z; Huang L; Zhang L
    Neural Netw; 2015 May; 65():105-14. PubMed ID: 25728473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller.
    Ding Z; Shen Y
    Neural Netw; 2016 Apr; 76():97-105. PubMed ID: 26874968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.