These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28750515)

  • 1. Highly Sensitive, Label-Free Detection of 2,4-Dichlorophenoxyacetic Acid Using an Optofluidic Chip.
    Feng X; Zhang G; Chin LK; Liu AQ; Liedberg B
    ACS Sens; 2017 Jul; 2(7):955-960. PubMed ID: 28750515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free biosensing using a microring resonator integrated with poly-(dimethylsiloxane) microfluidic channels.
    Wu S; Guo Y; Wang W; Zhou J; Zhang Q
    Rev Sci Instrum; 2019 Mar; 90(3):035004. PubMed ID: 30927803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive and rapid detection of 2,4-dicholorophenoxyacetic acid in water samples by using evanescent wave all-fiber immunosensor.
    Long F; Shi HC; He M; Zhu AN
    Biosens Bioelectron; 2008 Apr; 23(9):1361-6. PubMed ID: 18201886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection.
    Li M; Wu X; Liu L; Fan X; Xu L
    Anal Chem; 2013 Oct; 85(19):9328-32. PubMed ID: 23992426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications.
    De Vos K; Girones J; Popelka S; Schacht E; Baets R; Bienstman P
    Biosens Bioelectron; 2009 Apr; 24(8):2528-33. PubMed ID: 19200711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast, sensitive and selective determination of herbicide glyphosate in water samples with a White Light Reflectance Spectroscopy immunosensor.
    Stavra E; Petrou PS; Koukouvinos G; Economou A; Goustouridis D; Misiakos K; Raptis I; Kakabakos SE
    Talanta; 2020 Jul; 214():120854. PubMed ID: 32278411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging.
    Gobi KV; Tanaka H; Shoyama Y; Miura N
    Biosens Bioelectron; 2004 Sep; 20(2):350-7. PubMed ID: 15308241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free biosensor based on an electrical tracing-assisted silicon microring resonator with a low-cost broadband source.
    Kim KW; Song J; Kee JS; Liu Q; Lo GQ; Park MK
    Biosens Bioelectron; 2013 Aug; 46():15-21. PubMed ID: 23500471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticles catalyzed chemiluminescence immunoassay for detection of herbicide 2,4-dichlorophenoxyacetic acid.
    Chandra Boro R; Kaushal J; Nangia Y; Wangoo N; Bhasin A; Suri CR
    Analyst; 2011 May; 136(10):2125-30. PubMed ID: 21455533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optofluidic biomolecule sensors based on a-Si:H microrings embedded in silicon-glass microchannels.
    Lipka T; Moldenhauer L; Wahn L; Trieu HK
    Opt Lett; 2017 Mar; 42(6):1084-1087. PubMed ID: 28295098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Sensitive Label-Free Detection of Small Molecules with an Optofluidic Microbubble Resonator.
    Li Z; Zhu C; Guo Z; Wang B; Wu X; Fei Y
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection.
    Deng Y; Idso MN; Galvan DD; Yu Q
    Anal Chim Acta; 2015 Mar; 863():41-8. PubMed ID: 25732311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic Platform for Rapid On-Chip Analysis of Total Phosphorus in Surface Water Using Absorption Spectrometry.
    Zhao K; Li C; Wan L; Luo F; Cheng Z; Duan J; Wang N
    Appl Spectrosc; 2022 May; 76(5):599-608. PubMed ID: 35081753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator.
    Zhu JM; Shi Y; Zhu XQ; Yang Y; Jiang FH; Sun CJ; Zhao WH; Han XT
    Lab Chip; 2017 Nov; 17(23):4025-4030. PubMed ID: 29090721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices.
    Cai H; Poon AW
    Opt Lett; 2010 Sep; 35(17):2855-7. PubMed ID: 20808347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive and label-free detection of biotin using a liquid crystal-based optofluidic biosensor.
    Wang H; Xu T; Wang Z; Liu Y; Chen H; Jiang J; Liu T
    Biomed Opt Express; 2023 Jul; 14(7):3763-3774. PubMed ID: 37497519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of biomolecule detection with optofluidic ring resonator sensors.
    Zhu H; White IM; Suter JD; Dale PS; Fan X
    Opt Express; 2007 Jul; 15(15):9139-46. PubMed ID: 19547254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip spectrophotometry for bioanalysis using microring resonators.
    Nitkowski A; Baeumner A; Lipson M
    Biomed Opt Express; 2011 Jan; 2(2):271-7. PubMed ID: 21339873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip.
    Hogan BT; Dyakov SA; Brennan LJ; Younesy S; Perova TS; Gun'ko YK; Craciun MF; Baldycheva A
    Sci Rep; 2017 Feb; 7():42120. PubMed ID: 28186118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of highly sensitive piezoelectric immunosensors for 2,4-dichlorophenoxyacetic acid.
    Halámek J; Hepel M; Skládal P
    Biosens Bioelectron; 2001 Jun; 16(4-5):253-60. PubMed ID: 11390212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.