These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28750604)

  • 1. Inferring Methionine Sulfoxidation and serine Phosphorylation crosstalk from Phylogenetic analyses.
    Aledo JC
    BMC Evol Biol; 2017 Jul; 17(1):171. PubMed ID: 28750604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions.
    Veredas FJ; Cantón FR; Aledo JC
    Sci Rep; 2017 Jan; 7():40403. PubMed ID: 28079140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfonation and phosphorylation of regions of the dioxin receptor susceptible to methionine modifications.
    Dave KA; Whelan F; Bindloss C; Furness SG; Chapman-Smith A; Whitelaw ML; Gorman JJ
    Mol Cell Proteomics; 2009 Apr; 8(4):706-19. PubMed ID: 19059900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning approach for predicting methionine oxidation sites.
    Aledo JC; Cantón FR; Veredas FJ
    BMC Bioinformatics; 2017 Sep; 18(1):430. PubMed ID: 28962549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MetOSite: an integrated resource for the study of methionine residues sulfoxidation.
    Valverde H; Cantón FR; Aledo JC
    Bioinformatics; 2019 Nov; 35(22):4849-4850. PubMed ID: 31197322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine sulfoxidation of the chloroplast small heat shock protein and conformational changes in the oligomer.
    Gustavsson N; Härndahl U; Emanuelsson A; Roepstorff P; Sundby C
    Protein Sci; 1999 Nov; 8(11):2506-12. PubMed ID: 10595556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GCN2- and eIF2α-phosphorylation-independent, but ATF4-dependent, induction of CARE-containing genes in methionine-deficient cells.
    Mazor KM; Stipanuk MH
    Amino Acids; 2016 Dec; 48(12):2831-2842. PubMed ID: 27613409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methionine in Proteins: It's Not Just for Protein Initiation Anymore.
    Lim JM; Kim G; Levine RL
    Neurochem Res; 2019 Jan; 44(1):247-257. PubMed ID: 29327308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysine biotinylation and methionine oxidation in the heat shock protein HSP60 synergize in the elimination of reactive oxygen species in human cell cultures.
    Li Y; Malkaram SA; Zhou J; Zempleni J
    J Nutr Biochem; 2014 Apr; 25(4):475-82. PubMed ID: 24582286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergent signaling pathways--interaction between methionine oxidation and serine/threonine/tyrosine O-phosphorylation.
    Rao RS; Møller IM; Thelen JJ; Miernyk JA
    Cell Stress Chaperones; 2015 Jan; 20(1):15-21. PubMed ID: 25238876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residues required for phosphorylation of translation initiation factor eIF2α under diverse stress conditions are divergent between yeast and human.
    Majumder M; Mitchell D; Merkulov S; Wu J; Guan BJ; Snider MD; Krokowski D; Yee VC; Hatzoglou M
    Int J Biochem Cell Biol; 2015 Feb; 59():135-41. PubMed ID: 25541374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution of conserved methionines by leucines in chloroplast small heat shock protein results in loss of redox-response but retained chaperone-like activity.
    Gustavsson N; Kokke BP; Anzelius B; Boelens WC; Sundby C
    Protein Sci; 2001 Sep; 10(9):1785-93. PubMed ID: 11514669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of the translation initiation factor eIF2α at serine 51 determines the cell fate decisions of Akt in response to oxidative stress.
    Rajesh K; Krishnamoorthy J; Kazimierczak U; Tenkerian C; Papadakis AI; Wang S; Huang S; Koromilas AE
    Cell Death Dis; 2015 Jan; 6(1):e1591. PubMed ID: 25590801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses.
    Fares MA; Travers SA
    Genetics; 2006 May; 173(1):9-23. PubMed ID: 16547113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A small heat shock protein from Artemia franciscana is phosphorylated at serine 50.
    Qiu Z; Viner RI; MacRae TH; Willsie JK; Clegg JS
    Biochim Biophys Acta; 2004 Jul; 1700(1):75-83. PubMed ID: 15210127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis.
    Hardin SC; Larue CT; Oh MH; Jain V; Huber SC
    Biochem J; 2009 Aug; 422(2):305-12. PubMed ID: 19527223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aldehyde dehydrogenase 2 activation and coevolution of its εPKC-mediated phosphorylation sites.
    Nene A; Chen CH; Disatnik MH; Cruz L; Mochly-Rosen D
    J Biomed Sci; 2017 Jan; 24(1):3. PubMed ID: 28056995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible methionine sulfoxidation of Mycobacterium tuberculosis small heat shock protein Hsp16.3 and its possible role in scavenging oxidants.
    Abulimiti A; Qiu X; Chen J; Liu Y; Chang Z
    Biochem Biophys Res Commun; 2003 May; 305(1):87-93. PubMed ID: 12732200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eIF2B) recognize overlapping surfaces on eIF2alpha.
    Dey M; Trieselmann B; Locke EG; Lu J; Cao C; Dar AC; Krishnamoorthy T; Dong J; Sicheri F; Dever TE
    Mol Cell Biol; 2005 Apr; 25(8):3063-75. PubMed ID: 15798194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for analyzing eIF2 kinases and translational control in the unfolded protein response.
    Teske BF; Baird TD; Wek RC
    Methods Enzymol; 2011; 490():333-56. PubMed ID: 21266259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.