BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28750683)

  • 1. Identification of novel prostate cancer drivers using RegNetDriver: a framework for integration of genetic and epigenetic alterations with tissue-specific regulatory network.
    Dhingra P; Martinez-Fundichely A; Berger A; Huang FW; Forbes AN; Liu EM; Liu D; Sboner A; Tamayo P; Rickman DS; Rubin MA; Khurana E
    Genome Biol; 2017 Jul; 18(1):141. PubMed ID: 28750683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA methylation-based chromatin compartments and ChIP-seq profiles reveal transcriptional drivers of prostate carcinogenesis.
    Simmonds P; Loomis E; Curry E
    Genome Med; 2017 Jun; 9(1):54. PubMed ID: 28592290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OASIS/CREB3L1 is epigenetically silenced in human bladder cancer facilitating tumor cell spreading and migration in vitro.
    Rose M; Schubert C; Dierichs L; Gaisa NT; Heer M; Heidenreich A; Knüchel R; Dahl E
    Epigenetics; 2014 Dec; 9(12):1626-40. PubMed ID: 25625847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic silencing of CREB3L1 by DNA methylation is associated with high-grade metastatic breast cancers with poor prognosis and is prevalent in triple negative breast cancers.
    Ward AK; Mellor P; Smith SE; Kendall S; Just NA; Vizeacoumar FS; Sarker S; Phillips Z; Alvi R; Saxena A; Vizeacoumar FJ; Carlsen SA; Anderson DH
    Breast Cancer Res; 2016 Jan; 18(1):12. PubMed ID: 26810754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue.
    Geybels MS; Zhao S; Wong CJ; Bibikova M; Klotzle B; Wu M; Ostrander EA; Fan JB; Feng Z; Stanford JL
    Prostate; 2015 Dec; 75(16):1941-50. PubMed ID: 26383847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HES5 silencing is an early and recurrent change in prostate tumourigenesis.
    Massie CE; Spiteri I; Ross-Adams H; Luxton H; Kay J; Whitaker HC; Dunning MJ; Lamb AD; Ramos-Montoya A; Brewer DS; Cooper CS; Eeles R; ; Warren AY; Tavaré S; Neal DE; Lynch AG
    Endocr Relat Cancer; 2015 Apr; 22(2):131-44. PubMed ID: 25560400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An NKX3.1 binding site polymorphism in the l-plastin promoter leads to differential gene expression in human prostate cancer.
    Chen C; Cai Q; He W; Li Z; Zhou F; Liu Z; Zhong G; Chen X; Zhao Y; Dong W; Huang J; Zheng J; Lin T
    Int J Cancer; 2016 Jan; 138(1):74-86. PubMed ID: 26148677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairment of IGF2 gene expression in prostate cancer is triggered by epigenetic dysregulation of IGF2-DMR0 and its interaction with KLF4.
    Schagdarsurengin U; Lammert A; Schunk N; Sheridan D; Gattenloehner S; Steger K; Wagenlehner F; Dansranjavin T
    Cell Commun Signal; 2017 Oct; 15(1):40. PubMed ID: 29017567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic and genetic alterations and their influence on gene regulation in chronic lymphocytic leukemia.
    Huang D; Ovcharenko I
    BMC Genomics; 2017 Mar; 18(1):236. PubMed ID: 28302063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.
    Rhie SK; Guo Y; Tak YG; Yao L; Shen H; Coetzee GA; Laird PW; Farnham PJ
    Epigenetics Chromatin; 2016; 9():50. PubMed ID: 27833659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and validation of regulatory SNPs that modulate transcription factor chromatin binding and gene expression in prostate cancer.
    Jin HJ; Jung S; DebRoy AR; Davuluri RV
    Oncotarget; 2016 Aug; 7(34):54616-54626. PubMed ID: 27409348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases.
    Aryee MJ; Liu W; Engelmann JC; Nuhn P; Gurel M; Haffner MC; Esopi D; Irizarry RA; Getzenberg RH; Nelson WG; Luo J; Xu J; Isaacs WB; Bova GS; Yegnasubramanian S
    Sci Transl Med; 2013 Jan; 5(169):169ra10. PubMed ID: 23345608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression.
    Ngollo M; Lebert A; Daures M; Judes G; Rifai K; Dubois L; Kemeny JL; Penault-Llorca F; Bignon YJ; Guy L; Bernard-Gallon D
    BMC Cancer; 2017 Apr; 17(1):261. PubMed ID: 28403887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells.
    Wilson S; Fan L; Sahgal N; Qi J; Filipp FV
    Oncotarget; 2017 May; 8(18):30328-30343. PubMed ID: 28416760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer.
    Ross-Adams H; Ball S; Lawrenson K; Halim S; Russell R; Wells C; Strand SH; Ørntoft TF; Larson M; Armasu S; Massie CE; Asim M; Mortensen MM; Borre M; Woodfine K; Warren AY; Lamb AD; Kay J; Whitaker H; Ramos-Montoya A; Murrell A; Sørensen KD; Fridley BL; Goode EL; Gayther SA; Masters J; Neal DE; Mills IG
    Oncotarget; 2016 Nov; 7(46):74734-74746. PubMed ID: 27732966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic interplay between locus-specific DNA methylation and hydroxymethylation regulates distinct biological pathways in prostate carcinogenesis.
    Kamdar SN; Ho LT; Kron KJ; Isserlin R; van der Kwast T; Zlotta AR; Fleshner NE; Bader G; Bapat B
    Clin Epigenetics; 2016; 8():32. PubMed ID: 26981160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testis specific Y-like 5: gene expression, methylation and implications for drug sensitivity in prostate carcinoma.
    Kumar SR; Bryan JN; Esebua M; Amos-Landgraf J; May TJ
    BMC Cancer; 2017 Feb; 17(1):158. PubMed ID: 28235398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust gene network analysis reveals alteration of the STAT5a network as a hallmark of prostate cancer.
    Reddy A; Huang CC; Liu H; Delisi C; Nevalainen MT; Szalma S; Bhanot G
    Genome Inform; 2010; 24():139-53. PubMed ID: 22081596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide methylation analysis identifies involvement of TNF-α mediated cancer pathways in prostate cancer.
    Kim SJ; Kelly WK; Fu A; Haines K; Hoffman A; Zheng T; Zhu Y
    Cancer Lett; 2011 Mar; 302(1):47-53. PubMed ID: 21237555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IDPT: Insights into potential intrinsically disordered proteins through transcriptomic analysis of genes for prostate carcinoma epigenetic data.
    Mallik S; Sen S; Maulik U
    Gene; 2016 Jul; 586(1):87-96. PubMed ID: 27060408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.