BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2875082)

  • 1. Enzymatic adaptation to physical training under beta-blockade in the rat. Evidence of a beta 2-adrenergic mechanism in skeletal muscle.
    Ji LL; Lennon DL; Kochan RG; Nagle FJ; Lardy HA
    J Clin Invest; 1986 Sep; 78(3):771-8. PubMed ID: 2875082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of beta 1- and beta 1 + beta 2-antagonists on training-induced myocardial hypertrophy and enzyme adaptation.
    Ji LL; Stratman FW; Lardy HA
    Biochem Pharmacol; 1987 Oct; 36(20):3411-7. PubMed ID: 2890350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of beta 1- vs. beta 1- beta 2-blockade on training adaptations in rat skeletal muscle.
    Thomas DP; Jenkins RR
    J Appl Physiol (1985); 1986 May; 60(5):1722-6. PubMed ID: 2872198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-adrenergic blockade and training in human subjects: effects on muscle metabolic capacity.
    Svedenhag J; Henriksson J; Juhlin-Dannfelt A
    Am J Physiol; 1984 Sep; 247(3 Pt 1):E305-11. PubMed ID: 6089581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle and hormonal adaptation to physical training in the rat: role of the sympatho-adrenal system.
    Henriksson J; Svedenhag J; Richter EA; Christensen NJ; Galbo H
    Acta Physiol Scand; 1985 Feb; 123(2):127-38. PubMed ID: 2984895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of selective and nonselective beta-adrenergic blockade on mechanisms of exercise conditioning.
    Wolfel EE; Hiatt WR; Brammell HL; Carry MR; Ringel SP; Travis V; Horwitz LD
    Circulation; 1986 Oct; 74(4):664-74. PubMed ID: 2875812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptations of muscular tissue to training.
    Holloszy JO
    Prog Cardiovasc Dis; 1976; 18(6):445-58. PubMed ID: 180563
    [No Abstract]   [Full Text] [Related]  

  • 8. Different metabolic adaptation of heart and skeletal muscles to moderate-intensity treadmill training in the rat.
    Zonderland ML; Bär PR; Reijneveld JC; Spruijt BM; Keizer HA; Glatz JF
    Eur J Appl Physiol Occup Physiol; 1999 Apr; 79(5):391-6. PubMed ID: 10208246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical training under the influence of beta-blockade in rats. III. Effects on muscular metabolism.
    Harri MN
    Eur J Appl Physiol Occup Physiol; 1980; 45(1):25-31. PubMed ID: 6107247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effects of hypoxia and endurance training on lipid metabolism in rat skeletal muscle.
    Galbès O; Goret L; Caillaud C; Mercier J; Obert P; Candau R; Py G
    Acta Physiol (Oxf); 2008 Jun; 193(2):163-73. PubMed ID: 18081885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcineurin is not involved in some mitochondrial enzyme adaptations to endurance exercise training in rat skeletal muscle.
    Terada S; Nakagawa H; Nakamura Y; Muraoka I
    Eur J Appl Physiol; 2003 Sep; 90(1-2):210-7. PubMed ID: 12856186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age is no barrier to muscle structural, biochemical and angiogenic adaptations to training up to 24 months in female rats.
    Rossiter HB; Howlett RA; Holcombe HH; Entin PL; Wagner HE; Wagner PD
    J Physiol; 2005 Jun; 565(Pt 3):993-1005. PubMed ID: 15845588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of diet and training on endurance performance in rats.
    Lee JS; Bruce CR; Spriet LL; Hawley JA
    Exp Physiol; 2001 Jul; 86(4):499-508. PubMed ID: 11445829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic stimulation of mammalian muscle: enzyme changes in individual fibers.
    Chi MM; Hintz CS; Henriksson J; Salmons S; Hellendahl RP; Park JL; Nemeth PM; Lowry OH
    Am J Physiol; 1986 Oct; 251(4 Pt 1):C633-42. PubMed ID: 3020991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle morphological and biochemical adaptations to training in obese Zucker rats.
    Torgan CE; Brozinick JT; Kastello GM; Ivy JL
    J Appl Physiol (1985); 1989 Nov; 67(5):1807-13. PubMed ID: 2557320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats.
    Morifuji M; Sanbongi C; Sugiura K
    Br J Nutr; 2006 Sep; 96(3):469-75. PubMed ID: 16925851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of beta-adrenergic mechanisms in exercise training-induced metabolic changes in respiratory and locomotor muscle.
    Powers SK; Wade M; Criswell D; Herb RA; Dodd S; Hussain R; Martin D
    Int J Sports Med; 1995 Jan; 16(1):13-8. PubMed ID: 7713624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial ATP production rate in 55 to 73-year-old men: effect of endurance training.
    Berthon P; Freyssenet D; Chatard JC; Castells J; Mujika I; Geyssant A; Guezennec CY; Denis C
    Acta Physiol Scand; 1995 Jun; 154(2):269-74. PubMed ID: 7572222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of microgravity on metabolic enzymes of individual muscle fibers.
    Manchester JK; Chi MM; Norris B; Ferrier B; Krasnov I; Nemeth PM; McDougal DB; Lowry OH
    FASEB J; 1990 Jan; 4(1):55-63. PubMed ID: 1967237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase of aerobic capacity by submaximal training and high-fat diets.
    Boyadjiev N
    Folia Med (Plovdiv); 1996; 38(1):49-59. PubMed ID: 8979456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.