These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28750982)

  • 1. The significance of closed kinematic chains to biological movement and dynamic stability.
    Levin S; de Solórzano SL; Scarr G
    J Bodyw Mov Ther; 2017 Jul; 21(3):664-672. PubMed ID: 28750982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mobility-based classification of closed kinematic chains in biomechanics and implications for motor control.
    Olsen AM
    J Exp Biol; 2019 Nov; 222(Pt 21):. PubMed ID: 31694932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotensegrity and myofascial chains: A global approach to an integrated kinetic chain.
    Dischiavi SL; Wright AA; Hegedus EJ; Bleakley CM
    Med Hypotheses; 2018 Jan; 110():90-96. PubMed ID: 29317079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear dynamical model and response of avian cranial kinesis.
    Meekangvan P; A Barhorst A; Burton TD; Chatterjee S; Schovanec L
    J Theor Biol; 2006 May; 240(1):32-47. PubMed ID: 16242730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linkage mechanisms in the vertebrate skull: Structure and function of three-dimensional, parallel transmission systems.
    Olsen AM; Westneat MW
    J Morphol; 2016 Dec; 277(12):1570-1583. PubMed ID: 27577864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using linkage models to explore skull kinematic diversity and functional convergence in arthrodire placoderms.
    Anderson PS
    J Morphol; 2010 Aug; 271(8):990-1005. PubMed ID: 20623651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Evolutionary Dynamics of Mechanically Complex Systems.
    Muñoz MM
    Integr Comp Biol; 2019 Sep; 59(3):705-715. PubMed ID: 31134268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling stability of a complex movement system.
    Keshner EA
    Phys Ther; 1990 Dec; 70(12):844-54. PubMed ID: 2236227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending the Geometric Approach for Studying Biomechanical Motions.
    Martinez CM; Wainwright PC
    Integr Comp Biol; 2019 Sep; 59(3):684-695. PubMed ID: 31199437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The opercular mouth-opening mechanism of largemouth bass functions as a 3D four-bar linkage with three degrees of freedom.
    Olsen AM; Camp AL; Brainerd EL
    J Exp Biol; 2017 Dec; 220(Pt 24):4612-4623. PubMed ID: 29237766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach for modelling kinematic dependencies for monitoring locations of objects in closed kinematic chains. (Part 2).
    Stien M; Hein A; Szymanski D; Lueth T
    Stud Health Technol Inform; 2002; 85():504-6. PubMed ID: 15458141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional kinematics of skeletal elements in avian prokinetic and rhynchokinetic skulls determined by Roentgen stereophotogrammetry.
    Gussekloo SW; Vosselman MG; Bout RG
    J Exp Biol; 2001 May; 204(Pt 10):1735-44. PubMed ID: 11316494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and kinematic evaluation of compensatory movements of the head, pelvis and thoracolumbar spine associated with asymmetric weight bearing of the pelvic limbs in trotting dogs.
    Hicks DA; Millis DL
    Vet Comp Orthop Traumatol; 2014; 27(6):453-60. PubMed ID: 25328077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional control of planar human arm movement.
    Gottlieb GL; Song Q; Almeida GL; Hong DA; Corcos D
    J Neurophysiol; 1997 Dec; 78(6):2985-98. PubMed ID: 9405518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints.
    Klous M; Klous S
    J Biomech Eng; 2010 Jul; 132(7):074501. PubMed ID: 20590294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements.
    Yoshioka S; Nagano A; Himeno R; Fukashiro S
    Biomed Eng Online; 2007 Jul; 6():26. PubMed ID: 17608922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots.
    Hannan MW; Walker ID
    J Robot Syst; 2003 Feb; 20(2):45-63. PubMed ID: 14983840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
    Borbély BJ; Szolgay P
    Biomed Eng Online; 2017 Jan; 16(1):21. PubMed ID: 28095857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.