These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 28751422)
21. Model of amino acid substitution in proteins encoded by mitochondrial DNA. Adachi J; Hasegawa M J Mol Evol; 1996 Apr; 42(4):459-68. PubMed ID: 8642615 [TBL] [Abstract][Full Text] [Related]
22. Identification by site-directed mutagenesis of amino acid residues contributing to serologic and CTL-defined epitope differences between HLA-A2.1 and HLA-A2.3. Hogan KT; Clayberger C; Bernhard EJ; Walk SF; Ridge JP; Parham P; Krensky AM; Engelhard VH J Immunol; 1988 Oct; 141(7):2519-25. PubMed ID: 2459215 [TBL] [Abstract][Full Text] [Related]
23. Detecting Adaptation in Protein-Coding Genes Using a Bayesian Site-Heterogeneous Mutation-Selection Codon Substitution Model. Rodrigue N; Lartillot N Mol Biol Evol; 2017 Jan; 34(1):204-214. PubMed ID: 27744408 [TBL] [Abstract][Full Text] [Related]
24. Fixation of deleterious mutations at critical positions in human proteins. Subramanian S Mol Biol Evol; 2011 Sep; 28(9):2687-93. PubMed ID: 21498603 [TBL] [Abstract][Full Text] [Related]
25. Effects of dispersed point substitutions in Repeat 1 of human interphotoreceptor retinoid binding protein (IRBP). Gross EA; Li GR; Ruuska SE; Boatright JH; Mian IS; Nickerson JM Mol Vis; 2000 Apr; 6():40-50. PubMed ID: 10756180 [TBL] [Abstract][Full Text] [Related]
26. Role of surface hydrophobic residues in the conformational stability of human lysozyme at three different positions. Funahashi J; Takano K; Yamagata Y; Yutani K Biochemistry; 2000 Nov; 39(47):14448-56. PubMed ID: 11087397 [TBL] [Abstract][Full Text] [Related]
27. Inferring natural selection operating on conservative and radical substitution at single amino acid sites. Suzuki Y Genes Genet Syst; 2007 Aug; 82(4):341-60. PubMed ID: 17895585 [TBL] [Abstract][Full Text] [Related]
28. Identification of Single Amino Acid Substitutions in Proteogenomics. Moshkovskii SA; Ivanov MV; Kuznetsova KG; Gorshkov MV Biochemistry (Mosc); 2018 Mar; 83(3):250-258. PubMed ID: 29625544 [TBL] [Abstract][Full Text] [Related]
29. Exploring a phylogenetic approach for the detection of correlated substitutions in proteins. Tuff P; Darlu P Mol Biol Evol; 2000 Nov; 17(11):1753-9. PubMed ID: 11070062 [TBL] [Abstract][Full Text] [Related]
30. Cancerous hyper-mutagenesis in p53 genes is possibly associated with transcriptional bypass of DNA lesions. Rodin SN; Rodin AS; Juhasz A; Holmquist GP Mutat Res; 2002 Dec; 510(1-2):153-68. PubMed ID: 12459451 [TBL] [Abstract][Full Text] [Related]
31. Searching for interpretable rules for disease mutations: a simulated annealing bump hunting strategy. Jiang R; Yang H; Sun F; Chen T BMC Bioinformatics; 2006 Sep; 7():417. PubMed ID: 16984653 [TBL] [Abstract][Full Text] [Related]
32. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d". Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472 [TBL] [Abstract][Full Text] [Related]
33. Random mutagenesis targeted to the active site of the EcoRV restriction endonuclease. Vipond IB; Halford SE Biochemistry; 1996 Feb; 35(6):1701-11. PubMed ID: 8639649 [TBL] [Abstract][Full Text] [Related]
34. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains. Zhao G; London E Biochemistry; 2005 Mar; 44(11):4488-98. PubMed ID: 15766279 [TBL] [Abstract][Full Text] [Related]
35. Identification of amino acids in the tau 2-region of the mouse glucocorticoid receptor that contribute to hormone binding and transcriptional activation. Milhon J; Lee S; Kohli K; Chen D; Hong H; Stallcup MR Mol Endocrinol; 1997 Nov; 11(12):1795-805. PubMed ID: 9369447 [TBL] [Abstract][Full Text] [Related]
36. Amino acid substitutions at multiple sites within the vaccinia virus D13 scaffold protein confer resistance to rifampicin. Charity JC; Katz E; Moss B Virology; 2007 Mar; 359(1):227-32. PubMed ID: 17055024 [TBL] [Abstract][Full Text] [Related]
37. Effects of single-point amino acid substitutions on the structure and function neuraminidase proteins in influenza A virus. Yano T; Nobusawa E; Nagy A; Nakajima S; Nakajima K Microbiol Immunol; 2008 Apr; 52(4):216-23. PubMed ID: 18426396 [TBL] [Abstract][Full Text] [Related]
38. Physicochemical improvement of rabbit derived single-domain antibodies by substitutions with amino acids conserved in camelid antibodies. Shinozaki N; Hashimoto R; Noda M; Uchiyama S J Biosci Bioeng; 2018 Jun; 125(6):654-661. PubMed ID: 29398547 [TBL] [Abstract][Full Text] [Related]
39. Substitution of aspartic acid-686 by histidine or asparagine in the human androgen receptor leads to a functionally inactive protein with altered hormone-binding characteristics. Ris-Stalpers C; Trifiro MA; Kuiper GG; Jenster G; Romalo G; Sai T; van Rooij HC; Kaufman M; Rosenfield RL; Liao S Mol Endocrinol; 1991 Oct; 5(10):1562-9. PubMed ID: 1775137 [TBL] [Abstract][Full Text] [Related]
40. Mutational analysis of the complex of human RNase inhibitor and human eosinophil-derived neurotoxin (RNase 2). Teufel DP; Kao RY; Acharya KR; Shapiro R Biochemistry; 2003 Feb; 42(6):1451-9. PubMed ID: 12578357 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]