BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 28751638)

  • 1. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases.
    Xiong T; Meister GE; Workman RE; Kato NC; Spellberg MJ; Turker F; Timp W; Ostermeier M; Novina CD
    Sci Rep; 2017 Jul; 7(1):6732. PubMed ID: 28751638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein engineering strategies for improving the selective methylation of target CpG sites by a dCas9-directed cytosine methyltransferase in bacteria.
    Xiong T; Rohm D; Workman RE; Roundtree L; Novina CD; Timp W; Ostermeier M
    PLoS One; 2018; 13(12):e0209408. PubMed ID: 30562388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated gene knockout for DNA methyltransferase Dnmt3a in CHO cells displays enhanced transgenic expression and long-term stability.
    Jia YL; Guo X; Lu JT; Wang XY; Qiu LL; Wang TY
    J Cell Mol Med; 2018 Sep; 22(9):4106-4116. PubMed ID: 29851281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases.
    Lin L; Liu Y; Xu F; Huang J; Daugaard TF; Petersen TS; Hansen B; Ye L; Zhou Q; Fang F; Yang L; Li S; Fløe L; Jensen KT; Shrock E; Chen F; Yang H; Wang J; Liu X; Xu X; Bolund L; Nielsen AL; Luo Y
    Gigascience; 2018 Mar; 7(3):1-19. PubMed ID: 29635374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs.
    Pflueger C; Tan D; Swain T; Nguyen T; Pflueger J; Nefzger C; Polo JM; Ford E; Lister R
    Genome Res; 2018 Aug; 28(8):1193-1206. PubMed ID: 29907613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A.
    Huang YH; Su J; Lei Y; Brunetti L; Gundry MC; Zhang X; Jeong M; Li W; Goodell MA
    Genome Biol; 2017 Sep; 18(1):176. PubMed ID: 28923089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenome editing strategies for the functional annotation of CTCF insulators.
    Tarjan DR; Flavahan WA; Bernstein BE
    Nat Commun; 2019 Sep; 10(1):4258. PubMed ID: 31534142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner.
    O'Geen H; Bates SL; Carter SS; Nisson KA; Halmai J; Fink KD; Rhie SK; Farnham PJ; Segal DJ
    Epigenetics Chromatin; 2019 May; 12(1):26. PubMed ID: 31053162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase.
    Stepper P; Kungulovski G; Jurkowska RZ; Chandra T; Krueger F; Reinhardt R; Reik W; Jeltsch A; Jurkowski TP
    Nucleic Acids Res; 2017 Feb; 45(4):1703-1713. PubMed ID: 27899645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2.
    Rajavelu A; Lungu C; Emperle M; Dukatz M; Bröhm A; Broche J; Hanelt I; Parsa E; Schiffers S; Karnik R; Meissner A; Carell T; Rathert P; Jurkowska RZ; Jeltsch A
    Nucleic Acids Res; 2018 Sep; 46(17):9044-9056. PubMed ID: 30102379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Targeted DNA Methylation with dCas9-Coupled DNMT3A-DNMT3L Methyltransferase.
    Bashtrykov P; Rajaram N; Jeltsch A
    Methods Mol Biol; 2023; 2577():177-188. PubMed ID: 36173573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system.
    Josipović G; Tadić V; Klasić M; Zanki V; Bečeheli I; Chung F; Ghantous A; Keser T; Madunić J; Bošković M; Lauc G; Herceg Z; Vojta A; Zoldoš V
    Nucleic Acids Res; 2019 Oct; 47(18):9637-9657. PubMed ID: 31410472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Editing DNA Methylation in the Mammalian Genome.
    Liu XS; Wu H; Ji X; Stelzer Y; Wu X; Czauderna S; Shu J; Dadon D; Young RA; Jaenisch R
    Cell; 2016 Sep; 167(1):233-247.e17. PubMed ID: 27662091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR technologies and the search for the PAM-free nuclease.
    Collias D; Beisel CL
    Nat Commun; 2021 Jan; 12(1):555. PubMed ID: 33483498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repurposing the CRISPR-Cas9 system for targeted DNA methylation.
    Vojta A; Dobrinić P; Tadić V; Bočkor L; Korać P; Julg B; Klasić M; Zoldoš V
    Nucleic Acids Res; 2016 Jul; 44(12):5615-28. PubMed ID: 26969735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Insulator Scanning of CpG Islands to Identify Regulatory Regions of Promoters Using CRISPR.
    Grob A; Marbiah M; Isalan M
    Methods Mol Biol; 2018; 1766():285-301. PubMed ID: 29605859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein.
    Lei Y; Zhang X; Su J; Jeong M; Gundry MC; Huang YH; Zhou Y; Li W; Goodell MA
    Nat Commun; 2017 Jul; 8():16026. PubMed ID: 28695892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A; Mir A; Ibraheim R; Gainetdinov I; Yoon Y; Song CQ; Cao Y; Gallant J; Xue W; Rivera-Pérez JA; Sontheimer EJ
    Mol Cell; 2019 Feb; 73(4):714-726.e4. PubMed ID: 30581144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.
    Liu L; Yin M; Wang M; Wang Y
    Mol Cell; 2019 Feb; 73(3):611-620.e3. PubMed ID: 30606466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.