These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 28751673)
1. III-Nitride Digital Alloy: Electronics and Optoelectronics Properties of the InN/GaN Ultra-Short Period Superlattice Nanostructures. Sun W; Tan CK; Tansu N Sci Rep; 2017 Jul; 7(1):6671. PubMed ID: 28751673 [TBL] [Abstract][Full Text] [Related]
2. AlN/GaN Digital Alloy for Mid- and Deep-Ultraviolet Optoelectronics. Sun W; Tan CK; Tansu N Sci Rep; 2017 Sep; 7(1):11826. PubMed ID: 28928372 [TBL] [Abstract][Full Text] [Related]
3. Ultra-Broadband Optical Gain in III-Nitride Digital Alloys. Sun W; Tan CK; Wierer JJ; Tansu N Sci Rep; 2018 Feb; 8(1):3109. PubMed ID: 29449620 [TBL] [Abstract][Full Text] [Related]
4. Material Design of Ultra-Thin InN/GaN Superlattices for a Long-Wavelength Light Emission. Xiang L; Zhang E; Kang W; Lin W; Kang J Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542608 [TBL] [Abstract][Full Text] [Related]
5. Atomic Ordering in InGaN Alloys within Nanowire Heterostructures. Woo SY; Bugnet M; Nguyen HP; Mi Z; Botton GA Nano Lett; 2015 Oct; 15(10):6413-8. PubMed ID: 26348690 [TBL] [Abstract][Full Text] [Related]
6. Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting. Caccamo L; Hartmann J; Fàbrega C; Estradé S; Lilienkamp G; Prades JD; Hoffmann MW; Ledig J; Wagner A; Wang X; Lopez-Conesa L; Peiró F; Rebled JM; Wehmann HH; Daum W; Shen H; Waag A ACS Appl Mater Interfaces; 2014 Feb; 6(4):2235-40. PubMed ID: 24517402 [TBL] [Abstract][Full Text] [Related]
7. Anisotropic Strain Relaxation in Semipolar (112¯2) InGaN/GaN Superlattice Relaxed Templates. Li W; Wang L; Chai R; Wen L; Wang Z; Guo W; Wang H; Yang S Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080045 [TBL] [Abstract][Full Text] [Related]
8. A III-nitride nanowire solar cell fabricated using a hybrid coaxial and uniaxial InGaN/GaN multi quantum well nanostructure. Park JH; Nandi R; Sim JK; Um DY; Kang S; Kim JS; Lee CR RSC Adv; 2018 Jun; 8(37):20585-20592. PubMed ID: 35542348 [TBL] [Abstract][Full Text] [Related]
9. Theoretical study of nitride short period superlattices. Gorczyca I; Suski T; Christensen NE; Svane A J Phys Condens Matter; 2018 Feb; 30(6):063001. PubMed ID: 29256446 [TBL] [Abstract][Full Text] [Related]
10. Wide bandgap III-nitride nanomembranes for optoelectronic applications. Park SH; Yuan G; Chen D; Xiong K; Song J; Leung B; Han J Nano Lett; 2014 Aug; 14(8):4293-8. PubMed ID: 24987800 [TBL] [Abstract][Full Text] [Related]
11. Toward highly radiative white light emitting nanostructures: a new approach to dislocation-eliminated GaN/InGaN core-shell nanostructures with a negligible polarization field. Kim JH; Ko YH; Cho JH; Gong SH; Ko SM; Cho YH Nanoscale; 2014 Nov; 6(23):14213-20. PubMed ID: 25225912 [TBL] [Abstract][Full Text] [Related]
12. Hydrostatic Pressure as a Tool for the Study of Semiconductor Properties-An Example of III-V Nitrides. Gorczyca I; Suski T; Perlin P; Grzegory I; Kaminska A; Staszczak G Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203200 [TBL] [Abstract][Full Text] [Related]
13. Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires. Kehagias T; Dimitrakopulos GP; Becker P; Kioseoglou J; Furtmayr F; Koukoula T; Häusler I; Chernikov A; Chatterjee S; Karakostas T; Solowan HM; Schwarz UT; Eickhoff M; Komninou P Nanotechnology; 2013 Nov; 24(43):435702. PubMed ID: 24076624 [TBL] [Abstract][Full Text] [Related]
14. Substitutional synthesis of sub-nanometer InGaN/GaN quantum wells with high indium content. Vasileiadis IG; Lymperakis L; Adikimenakis A; Gkotinakos A; Devulapalli V; Liebscher CH; Androulidaki M; Hübner R; Karakostas T; Georgakilas A; Komninou P; Dimakis E; Dimitrakopulos GP Sci Rep; 2021 Oct; 11(1):20606. PubMed ID: 34663895 [TBL] [Abstract][Full Text] [Related]
15. Nanoscale optical properties of indium gallium nitride/gallium nitride nanodisk-in-rod heterostructures. Zhou X; Lu MY; Lu YJ; Jones EJ; Gwo S; Gradečak S ACS Nano; 2015 Mar; 9(3):2868-75. PubMed ID: 25661775 [TBL] [Abstract][Full Text] [Related]
17. Optoelectrical characteristics of green light-emitting diodes containing thick InGaN wells with digitally grown InN/GaN. Yu CT; Lai WC; Yen CH; Hsu HC; Chang SJ Opt Express; 2014 May; 22 Suppl 3():A633-41. PubMed ID: 24922371 [TBL] [Abstract][Full Text] [Related]
18. High-Mobility Two-Dimensional Electron Gas at InGaN/InN Heterointerface Grown by Molecular Beam Epitaxy. Wang T; Wang X; Chen Z; Sun X; Wang P; Zheng X; Rong X; Yang L; Guo W; Wang D; Cheng J; Lin X; Li P; Li J; He X; Zhang Q; Li M; Zhang J; Yang X; Xu F; Ge W; Zhang X; Shen B Adv Sci (Weinh); 2018 Sep; 5(9):1800844. PubMed ID: 30250812 [TBL] [Abstract][Full Text] [Related]
19. Complete composition tunability of InGaN nanowires using a combinatorial approach. Kuykendall T; Ulrich P; Aloni S; Yang P Nat Mater; 2007 Dec; 6(12):951-6. PubMed ID: 17965718 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic theory of epitaxial alloys: first-principles mixed-basis cluster expansion of (In, Ga)N alloy film. Liu JZ; Zunger A J Phys Condens Matter; 2009 Jul; 21(29):295402. PubMed ID: 21828531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]