BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28751720)

  • 1. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles.
    Soetaert F; Kandala SK; Bakuzis A; Ivkov R
    Sci Rep; 2017 Jul; 7(1):6661. PubMed ID: 28751720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis.
    Carlton H; Ivkov R
    J Appl Phys; 2023 Jan; 133(4):044302. PubMed ID: 36718210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.
    Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D
    J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.
    Xu H; Pan Y
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31615049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia.
    Andreu I; Natividad E
    Int J Hyperthermia; 2013 Dec; 29(8):739-51. PubMed ID: 24001056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111274. PubMed ID: 32919638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Magnetic Properties of SrFe
    Nikolenko PI; Nizamov TR; Bordyuzhin IG; Abakumov MA; Baranova YA; Kovalev AD; Shchetinin IV
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance.
    Darwish MSA; Kim H; Lee H; Ryu C; Young Lee J; Yoon J
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32455690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictions of optimal heating by magnetic reversal behavior of magnetic nanowires (MNWs) with different materials.
    Chen Y; Stadler BJH
    Int J Hyperthermia; 2023; 40(1):2223371. PubMed ID: 37357335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients.
    Dhavalikar R; Rinaldi C
    J Magn Magn Mater; 2016 Dec; 419():267-273. PubMed ID: 28943706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy.
    Motoyama J; Hakata T; Kato R; Yamashita N; Morino T; Kobayashi T; Honda H
    Biomagn Res Technol; 2008 Oct; 6():4. PubMed ID: 18928573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic hybrid Pd/Fe-oxide nanoparticles meet the demands for ablative thermo-brachytherapy.
    van Oossanen R; Maier A; Godart J; Pignol JP; Denkova AG; van Rhoon GC; Djanashvili K
    Int J Hyperthermia; 2024; 41(1):2299480. PubMed ID: 38189281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HYPER: pre-clinical device for spatially-confined magnetic particle hyperthermia.
    Carlton H; Weber M; Peters M; Arepally N; Lad YS; Jaswal A; Ivkov R; Attaluri A; Goodwill P
    Int J Hyperthermia; 2023; 40(1):2272067. PubMed ID: 37875265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method to reduce non-specific tissue heating of small animals in solenoid coils.
    Kumar A; Attaluri A; Mallipudi R; Cornejo C; Bordelon D; Armour M; Morua K; Deweese TL; Ivkov R
    Int J Hyperthermia; 2013; 29(2):106-20. PubMed ID: 23402327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia.
    Wu Z; Zhuo Z; Cai D; Wu J; Wang J; Tang J
    Technol Health Care; 2015; 23 Suppl 2():S203-9. PubMed ID: 26410485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of Hyperthermia Properties of Iron Oxide Nanoparticles by Surface Coating.
    Vassallo M; Martella D; Barrera G; Celegato F; Coïsson M; Ferrero R; Olivetti ES; Troia A; Sözeri H; Parmeggiani C; Wiersma DS; Tiberto P; Manzin A
    ACS Omega; 2023 Jan; 8(2):2143-2154. PubMed ID: 36687092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.