These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28751860)

  • 1. Pseudo-Bootstrap Network Analysis-an Application in Functional Connectivity Fingerprinting.
    Cheng H; Li A; Koenigsberger AA; Huang C; Wang Y; Sheng J; Newman SD
    Front Hum Neurosci; 2017; 11():351. PubMed ID: 28751860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connectomes from streamlines tractography: Assigning streamlines to brain parcellations is not trivial but highly consequential.
    Yeh CH; Smith RE; Dhollander T; Calamante F; Connelly A
    Neuroimage; 2019 Oct; 199():160-171. PubMed ID: 31082471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subject-Specific Structural Parcellations Based on Randomized AB-divergences.
    Honnorat N; Parker D; Tunç B; Davatzikos C; Verma R
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():407-415. PubMed ID: 29075681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using connectomics for predictive assessment of brain parcellations.
    Albers KJ; Ambrosen KS; Liptrot MG; Dyrby TB; Schmidt MN; Mørup M
    Neuroimage; 2021 Sep; 238():118170. PubMed ID: 34087365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for estimating connectivity-based parcellation of the human brain from diffusion MRI: Application to an aging cohort.
    Coelho A; Magalhães R; Moreira PS; Amorim L; Portugal-Nunes C; Castanho T; Santos NC; Sousa N; Fernandes HM
    Hum Brain Mapp; 2022 Jun; 43(8):2419-2443. PubMed ID: 35274787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.
    Mejia AF; Nebel MB; Shou H; Crainiceanu CM; Pekar JJ; Mostofsky S; Caffo B; Lindquist MA
    Neuroimage; 2015 May; 112():14-29. PubMed ID: 25731998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extensive assessment of network alignment algorithms for comparison of brain connectomes.
    Milano M; Guzzi PH; Tymofieva O; Xu D; Hess C; Veltri P; Cannataro M
    BMC Bioinformatics; 2017 Jun; 18(Suppl 6):235. PubMed ID: 28617222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structurofunctional resting-state networks correlate with motor function in chronic stroke.
    Kalinosky BT; Berrios Barillas R; Schmit BD
    Neuroimage Clin; 2017; 16():610-623. PubMed ID: 28971011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature selection framework for functional connectome fingerprinting.
    Li K; Wisner K; Atluri G
    Hum Brain Mapp; 2021 Aug; 42(12):3717-3732. PubMed ID: 34076306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parcellating connectivity in spatial maps.
    Baldassano C; Beck DM; Fei-Fei L
    PeerJ; 2015; 3():e784. PubMed ID: 25737822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain parcellation based on information theory.
    Bonmati E; Bardera A; Boada I
    Comput Methods Programs Biomed; 2017 Nov; 151():203-212. PubMed ID: 28947002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. sGraSP: A graph-based method for the derivation of subject-specific functional parcellations of the brain.
    Honnorat N; Satterthwaite TD; Gur RE; Gur RC; Davatzikos C
    J Neurosci Methods; 2017 Feb; 277():1-20. PubMed ID: 27913211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Stability of Functional Networks: A Measure to Assess the Robustness of Graph-Theoretical Metrics to Spatial Errors Related to Brain Parcellation.
    Bottino F; Lucignani M; Pasquini L; Mastrogiovanni M; Gazzellini S; Ritrovato M; Longo D; Figà-Talamanca L; Rossi Espagnet MC; Napolitano A
    Front Neurosci; 2021; 15():736524. PubMed ID: 35250432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Origin of Individual Functional Connectivity Variability: The Role of White Matter Architecture.
    Chamberland M; Girard G; Bernier M; Fortin D; Descoteaux M; Whittingstall K
    Brain Connect; 2017 Oct; 7(8):491-503. PubMed ID: 28825322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling reproducible dynamic states of individual brain functional parcellation.
    Boukhdhir A; Zhang Y; Mignotte M; Bellec P
    Netw Neurosci; 2021; 5(1):28-55. PubMed ID: 33688605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parcellation-induced variation of empirical and simulated brain connectomes at group and subject levels.
    Domhof JWM; Jung K; Eickhoff SB; Popovych OV
    Netw Neurosci; 2021; 5(3):798-830. PubMed ID: 34746628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing fMRI connectivity networks: a whole brain functional parcellation method for node definition.
    Maggioni E; Tana MG; Arrigoni F; Zucca C; Bianchi AM
    J Neurosci Methods; 2014 May; 228():86-99. PubMed ID: 24675050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flexible graphical model for multi-modal parcellation of the cortex.
    Parisot S; Glocker B; Ktena SI; Arslan S; Schirmer MD; Rueckert D
    Neuroimage; 2017 Nov; 162():226-248. PubMed ID: 28889005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of using group-averaged or individualized brain parcellations when investigating connectome dysfunction in psychosis.
    Levi PT; Chopra S; Pang JC; Holmes A; Gajwani M; Sassenberg TA; DeYoung CG; Fornito A
    Netw Neurosci; 2023; 7(4):1228-1247. PubMed ID: 38144692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.