These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28752088)

  • 1. Electron Transfer between Electrically Conductive Minerals and Quinones.
    Taran O
    Front Chem; 2017; 5():49. PubMed ID: 28752088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment under preload surcharge.
    Karikari-Yeboah O; Skinner W; Addai-Mensah J
    Environ Monit Assess; 2019 Mar; 191(4):216. PubMed ID: 30868246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of Organic Carbon Sequestered by Biogenic Iron Sulfide Minerals in Long-Term Anoxic Laboratory Incubations.
    Nabeh N; Brokaw C; Picard A
    Front Microbiol; 2022; 13():662219. PubMed ID: 35572660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial interspecies electron transfer via electric currents through conductive minerals.
    Kato S; Hashimoto K; Watanabe K
    Proc Natl Acad Sci U S A; 2012 Jun; 109(25):10042-6. PubMed ID: 22665802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geoelectrodes and Fuel Cells for Simulating Hydrothermal Vent Environments.
    Barge LM; Krause FC; Jones JP; Billings K; Sobron P
    Astrobiology; 2018 Sep; 18(9):1147-1158. PubMed ID: 30106308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron Hopping Enables Rapid Electron Transfer between Quinone-/Hydroquinone-Containing Organic Molecules in Microbial Iron(III) Mineral Reduction.
    Bai Y; Sun T; Angenent LT; Haderlein SB; Kappler A
    Environ Sci Technol; 2020 Sep; 54(17):10646-10653. PubMed ID: 32867481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur-Mediated Electron Shuttling Sustains Microbial Long-Distance Extracellular Electron Transfer with the Aid of Metallic Iron Sulfides.
    Kondo K; Okamoto A; Hashimoto K; Nakamura R
    Langmuir; 2015 Jul; 31(26):7427-34. PubMed ID: 26070345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur Vacancies in Pyrite Trigger the Path to Nonradical Singlet Oxygen and Spontaneous Sulfamethoxazole Degradation: Unveiling the Hidden Potential in Sediments.
    Zhu L; Wang H; Sun J; Lu L; Li S
    Environ Sci Technol; 2024 Apr; 58(15):6753-6762. PubMed ID: 38526226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox transformation of structural iron in nontronite induced by quinones under anoxic conditions.
    Zhang N; Tong M; Yuan S
    Sci Total Environ; 2021 Dec; 801():149637. PubMed ID: 34416610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive biomining of pyrite by methanogens.
    Spietz RL; Payne D; Szilagyi R; Boyd ES
    Trends Microbiol; 2022 Nov; 30(11):1072-1083. PubMed ID: 35624031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements.
    Jiang Y; Shi M; Shi L
    Sci China Life Sci; 2019 Oct; 62(10):1275-1286. PubMed ID: 30900163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.
    Li X; Liu L; Liu T; Yuan T; Zhang W; Li F; Zhou S; Li Y
    Chemosphere; 2013 Jun; 92(2):218-24. PubMed ID: 23461838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of carbon-containing pyrite spherules induced by hyperthermophilic Thermococcales: a biosignature?
    Truong C; Bernard S; Le Pape P; Morin G; Baya C; Merrot P; Gorlas A; Guyot F
    Front Microbiol; 2023; 14():1145781. PubMed ID: 37303784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centimeter-long electron transport in marine sediments via conductive minerals.
    Malvankar NS; King GM; Lovley DR
    ISME J; 2015 Feb; 9(2):527-31. PubMed ID: 25050525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrite and Organic Compounds Coexisting in Intrusive Mafic Xenoliths (Hyblean Plateau, Sicily): Implications for Subsurface Abiogenesis.
    Scribano V; Simakov SK; Finocchiaro C; Correale A; Scirè S
    Orig Life Evol Biosph; 2019 Jun; 49(1-2):19-47. PubMed ID: 31302843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.
    Orsetti S; Laskov C; Haderlein SB
    Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions.
    Tabelin CB; Veerawattananun S; Ito M; Hiroyoshi N; Igarashi T
    Sci Total Environ; 2017 Mar; 581-582():126-135. PubMed ID: 28057346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial diversity and functional response to the redox dynamics of pyrite-rich sediment and the impact of preload surcharge.
    Karikari-Yeboah O; Skinner W; Addai-Mensah J
    Environ Monit Assess; 2020 Mar; 192(4):226. PubMed ID: 32152784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical analyses of redox-active iron minerals: a review of nonmediated and mediated approaches.
    Sander M; Hofstetter TB; Gorski CA
    Environ Sci Technol; 2015 May; 49(10):5862-78. PubMed ID: 25856208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greigite: a true intermediate on the polysulfide pathway to pyrite.
    Hunger S; Benning LG
    Geochem Trans; 2007 Mar; 8():1. PubMed ID: 17376247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.