BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 28752307)

  • 1. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands.
    Galal TM; Gharib FA; Ghazi SM; Mansour KH
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21636-21648. PubMed ID: 28752307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Cyperus alopecuroides Rottb. sedge in monitoring water pollution in contaminated wetlands in Egypt: a phytoremediation approach.
    Galal TM; Shedeed ZA; Gharib FA; Al-Yasi HM; Mansour KH
    Environ Sci Pollut Res Int; 2021 May; 28(18):23005-23016. PubMed ID: 33438123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of elemental uptake in the root chemistry of wetland plants.
    Aryal R; Nirola R; Beecham S; Kamruzzaman M
    Int J Phytoremediation; 2016 Sep; 18(9):936-42. PubMed ID: 26709636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: A phytoremediation approach.
    Galal TM; Gharib FA; Ghazi SM; Mansour KH
    Int J Phytoremediation; 2017 Nov; 19(11):992-999. PubMed ID: 28323451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte
    Galal TM; Al-Sodany YM; Al-Yasi HM
    Int J Phytoremediation; 2020; 22(4):373-382. PubMed ID: 31553230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands.
    Galal TM; Eid EM; Dakhil MA; Hassan LM
    Int J Phytoremediation; 2018 Apr; 20(5):440-447. PubMed ID: 29053352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China.
    Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace metal accumulation by Ranunculus sceleratus: implications for phytostabilization.
    Farahat EA; Galal TM
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4214-4222. PubMed ID: 29177787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils.
    Galal TM
    Environ Monit Assess; 2016 Jul; 188(7):434. PubMed ID: 27344559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S; Rana V; Kumar A; Maiti SK
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.
    Wu Q; Tam NF; Leung JY; Zhou X; Fu J; Yao B; Huang X; Xia L
    Ecotoxicol Environ Saf; 2014 Jun; 104():143-51. PubMed ID: 24675443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of heavy metals in water, sediments and wetland plants of kizilirmak delta (samsun, Turkey).
    Engin MS; Uyanik A; Kutbay HG
    Int J Phytoremediation; 2015; 17(1-6):66-75. PubMed ID: 25174426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution.
    Polechońska L; Samecka-Cymerman A
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3469-80. PubMed ID: 26490926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India.
    Rai PK
    Environ Monit Assess; 2009 Nov; 158(1-4):433-57. PubMed ID: 18998227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals concentration, and antioxidant activity of the essential oil of the wild mint (
    Gharib FA; Mansour KH; Ahmed EZ; Galal TM
    Int J Phytoremediation; 2021; 23(6):641-651. PubMed ID: 33232173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the
    Huang X; Zhao F; Yu G; Song C; Geng Z; Zhuang P
    Biomed Res Int; 2017; 2017():6201048. PubMed ID: 28717650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium.
    Lesage E; Rousseau DP; Meers E; Tack FM; De Pauw N
    Sci Total Environ; 2007 Jul; 380(1-3):102-15. PubMed ID: 17240426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Regional distribution and ecological risk evaluation of heavy metals in surface sediments from coastal wetlands of the Yellow River Delta].
    Liu ZJ; Li PY; Zhang XL; Li P; Zhu LH
    Huan Jing Ke Xue; 2012 Apr; 33(4):1182-8. PubMed ID: 22720563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for preferential depths of metal retention in roots of salt marsh plants.
    Caetano M; Vale C; Cesário R; Fonseca N
    Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.