BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 28752802)

  • 1. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells.
    Eyni H; Ghorbani S; Shirazi R; Salari Asl L; P Beiranvand S; Soleimani M
    J Biomater Appl; 2017 Sep; 32(3):373-383. PubMed ID: 28752802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and chondrogenic differentiation of menstrual blood-derived stem cells on a nanofibrous scaffold.
    Kazemnejad S; Akhondi MM; Soleimani M; Zarnani AH; Khanmohammadi M; Darzi S; Alimoghadam K
    Int J Artif Organs; 2012 Jan; 35(1):55-66. PubMed ID: 22307334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes.
    Holmes B; Castro NJ; Li J; Keidar M; Zhang LG
    Nanotechnology; 2013 Sep; 24(36):365102. PubMed ID: 23959974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun poly(L-lactide)/poly(ε-caprolactone) blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells.
    Chen L; Bai Y; Liao G; Peng E; Wu B; Wang Y; Zeng X; Xie X
    PLoS One; 2013; 8(8):e71265. PubMed ID: 23990941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of mesenchymal stem cells into neuron-like cells using composite 3D scaffold combined with valproic acid induction.
    Ghorbani S; Tiraihi T; Soleimani M
    J Biomater Appl; 2018 Jan; 32(6):702-715. PubMed ID: 29169271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression in human adipose-derived stem cells: comparison of 2D films, 3D electrospun meshes or co-cultured scaffolds with two-way paracrine effects.
    Hess SC; Stark WJ; Mohn D; Cohrs N; Märsmann S; Calcagni M; Cinelli P; Buschmann J
    Eur Cell Mater; 2017 Oct; 34():232-248. PubMed ID: 29028070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primordial germ cell differentiation of nuclear transfer embryonic stem cells using surface modified electroconductive scaffolds.
    Eslami-Arshaghi T; Vakilian S; Seyedjafari E; Ardeshirylajimi A; Soleimani M; Salehi M
    In Vitro Cell Dev Biol Anim; 2017 Apr; 53(4):371-380. PubMed ID: 28039620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Future of Spermatogonial Stem Cell Culture: Application of Nanofiber Scaffolds.
    Shams A; Eslahi N; Movahedin M; Izadyar F; Asgari H; Koruji M
    Curr Stem Cell Res Ther; 2017; 12(7):544-553. PubMed ID: 28641554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of menstrual blood stem cells seeded in biocompatible Bombyx mori silk fibroin scaffold for cardiac tissue engineering.
    Rahimi M; Mohseni-Kouchesfehani H; Zarnani AH; Mobini S; Nikoo S; Kazemnejad S
    J Biomater Appl; 2014 Aug; 29(2):199-208. PubMed ID: 24445773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering.
    Zhang C; Wang X; Zhang E; Yang L; Yuan H; Tu W; Zhang H; Yin Z; Shen W; Chen X; Zhang Y; Ouyang H
    Acta Biomater; 2018 Jan; 66():141-156. PubMed ID: 28963019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a thermoresponsive polycaprolactone scaffold for in vitro three-dimensional stem cell differentiation.
    Hruschka V; Saeed A; Slezak P; Cheikh Al Ghanami R; Feichtinger GA; Alexander C; Redl H; Shakesheff K; Wolbank S
    Tissue Eng Part A; 2015 Jan; 21(1-2):310-9. PubMed ID: 25167885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of highly porous electrospun PLGA/PCL/nHA fibrous scaffolds on the differentiation of tooth bud cells in vitro.
    Cai X; Ten Hoopen S; Zhang W; Yi C; Yang W; Yang F; Jansen JA; Walboomers XF; Yelick PC
    J Biomed Mater Res A; 2017 Sep; 105(9):2597-2607. PubMed ID: 28544201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: An in vitro study.
    Zhang K; Guo X; Li Y; Fu Q; Mo X; Nelson K; Zhao W
    Colloids Surf B Biointerfaces; 2016 Aug; 144():21-32. PubMed ID: 27060665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.
    Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of PLGA/MWNTs composite electrospun fibrous scaffolds for improved myogenic differentiation of C2C12 cells.
    Xu J; Xie Y; Zhang H; Ye Z; Zhang W
    Colloids Surf B Biointerfaces; 2014 Nov; 123():907-15. PubMed ID: 25466454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid poly-l-lactic acid/poly(ε-caprolactone) nanofibrous scaffold can improve biochemical and molecular markers of human induced pluripotent stem cell-derived hepatocyte-like cells.
    Mobarra N; Soleimani M; Ghayour-Mobarhan M; Safarpour S; Ferns GA; Pakzad R; Pasalar P
    J Cell Physiol; 2019 Jul; 234(7):11247-11255. PubMed ID: 30515778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ε-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells.
    Crowder SW; Liang Y; Rath R; Park AM; Maltais S; Pintauro PN; Hofmeister W; Lim CC; Wang X; Sung HJ
    Nanomedicine (Lond); 2013 Nov; 8(11):1763-76. PubMed ID: 23530764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro characterization of an electroactive carbon-nanotube-based nanofiber scaffold for tissue engineering.
    Mackle JN; Blond DJ; Mooney E; McDonnell C; Blau WJ; Shaw G; Barry FP; Murphy JM; Barron V
    Macromol Biosci; 2011 Sep; 11(9):1272-82. PubMed ID: 21728234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.