BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28752991)

  • 1. Entry of a Six-Residue Antimicrobial Peptide Derived from Lactoferricin B into Single Vesicles and Escherichia coli Cells without Damaging their Membranes.
    Moniruzzaman M; Islam MZ; Sharmin S; Dohra H; Yamazaki M
    Biochemistry; 2017 Aug; 56(33):4419-4431. PubMed ID: 28752991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane potential is vital for rapid permeabilization of plasma membranes and lipid bilayers by the antimicrobial peptide lactoferricin B.
    Hossain F; Moghal MMR; Islam MZ; Moniruzzaman M; Yamazaki M
    J Biol Chem; 2019 Jul; 294(27):10449-10462. PubMed ID: 31118274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of membrane potential on entry of lactoferricin B-derived 6-residue antimicrobial peptide into single
    Hossain F; Dohra H; Yamazaki M
    J Bacteriol; 2021 May; 203(9):. PubMed ID: 33558393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.
    Moniruzzaman M; Alam JM; Dohra H; Yamazaki M
    Biochemistry; 2015 Sep; 54(38):5802-14. PubMed ID: 26368853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.
    Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M
    Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles.
    Moghal MMR; Islam MZ; Sharmin S; Levadnyy V; Moniruzzaman M; Yamazaki M
    Chem Phys Lipids; 2018 May; 212():120-129. PubMed ID: 29425855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores.
    Islam MZ; Ariyama H; Alam JM; Yamazaki M
    Biochemistry; 2014 Jan; 53(2):386-96. PubMed ID: 24397335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elementary processes of antimicrobial peptide PGLa-induced pore formation in lipid bilayers.
    Parvez F; Alam JM; Dohra H; Yamazaki M
    Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2262-2271. PubMed ID: 30409522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability.
    Tamba Y; Yamazaki M
    Biochemistry; 2005 Dec; 44(48):15823-33. PubMed ID: 16313185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles.
    Shuma ML; Moghal MMR; Yamazaki M
    Biochemistry; 2020 May; 59(18):1780-1790. PubMed ID: 32285663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation of the nonlabeled antimicrobial peptide PGLa across lipid bilayers and its entry into vesicle lumens without pore formation.
    Ali MH; Shuma ML; Dohra H; Yamazaki M
    Biochim Biophys Acta Biomembr; 2021 Oct; 1863(10):183680. PubMed ID: 34153295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface.
    Tamba Y; Yamazaki M
    J Phys Chem B; 2009 Apr; 113(14):4846-52. PubMed ID: 19267489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane.
    Vivcharuk V; Tomberli B; Tolokh IS; Gray CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031913. PubMed ID: 18517428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane.
    Tolokh IS; Vivcharuk V; Tomberli B; Gray CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031911. PubMed ID: 19905150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria.
    Mader JS; Richardson A; Salsman J; Top D; de Antueno R; Duncan R; Hoskin DW
    Exp Cell Res; 2007 Jul; 313(12):2634-50. PubMed ID: 17570361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers.
    Arseneault M; Bédard S; Boulet-Audet M; Pézolet M
    Langmuir; 2010 Mar; 26(5):3468-78. PubMed ID: 20112931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes.
    Tamba Y; Ohba S; Kubota M; Yoshioka H; Yoshioka H; Yamazaki M
    Biophys J; 2007 May; 92(9):3178-94. PubMed ID: 17293394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip.
    Tu YH; Ho YH; Chuang YC; Chen PC; Chen CS
    PLoS One; 2011; 6(12):e28197. PubMed ID: 22164243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes.
    Tamba Y; Ariyama H; Levadny V; Yamazaki M
    J Phys Chem B; 2010 Sep; 114(37):12018-26. PubMed ID: 20799752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides.
    Liu Y; Han F; Xie Y; Wang Y
    Biometals; 2011 Dec; 24(6):1069-78. PubMed ID: 21607695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.