These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
637 related articles for article (PubMed ID: 28753113)
1. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab. Fujii R; Schlom J; Hodge JW J Neurosurg; 2018 May; 128(5):1419-1427. PubMed ID: 28753113 [TBL] [Abstract][Full Text] [Related]
2. An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Jochems C; Hodge JW; Fantini M; Fujii R; Morillon YM; Greiner JW; Padget MR; Tritsch SR; Tsang KY; Campbell KS; Klingemann H; Boissel L; Rabizadeh S; Soon-Shiong P; Schlom J Oncotarget; 2016 Dec; 7(52):86359-86373. PubMed ID: 27861156 [TBL] [Abstract][Full Text] [Related]
3. ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody. Jochems C; Hodge JW; Fantini M; Tsang KY; Vandeveer AJ; Gulley JL; Schlom J Int J Cancer; 2017 Aug; 141(3):583-593. PubMed ID: 28477372 [TBL] [Abstract][Full Text] [Related]
4. Role of polymorphic Fc gamma receptor IIIa and EGFR expression level in cetuximab mediated, NK cell dependent in vitro cytotoxicity of head and neck squamous cell carcinoma cells. López-Albaitero A; Lee SC; Morgan S; Grandis JR; Gooding WE; Ferrone S; Ferris RL Cancer Immunol Immunother; 2009 Nov; 58(11):1853-64. PubMed ID: 19319529 [TBL] [Abstract][Full Text] [Related]
5. FcgammaRIIIa polymorphisms and cetuximab induced cytotoxicity in squamous cell carcinoma of the head and neck. Taylor RJ; Chan SL; Wood A; Voskens CJ; Wolf JS; Lin W; Chapoval A; Schulze DH; Tian G; Strome SE Cancer Immunol Immunother; 2009 Jul; 58(7):997-1006. PubMed ID: 18979096 [TBL] [Abstract][Full Text] [Related]
6. Characterization of FcγRIIIA effector cells used in in vitro ADCC bioassay: Comparison of primary NK cells with engineered NK-92 and Jurkat T cells. Hsieh YT; Aggarwal P; Cirelli D; Gu L; Surowy T; Mozier NM J Immunol Methods; 2017 Feb; 441():56-66. PubMed ID: 27939300 [TBL] [Abstract][Full Text] [Related]
7. Canine non-B, non-T NK lymphocytes have a potential antibody-dependent cellular cytotoxicity function against antibody-coated tumor cells. Kim Y; Lee SH; Kim CJ; Lee JJ; Yu D; Ahn S; Shin DJ; Kim SK BMC Vet Res; 2019 Oct; 15(1):339. PubMed ID: 31610784 [TBL] [Abstract][Full Text] [Related]
8. IL-15 and IL-2 increase Cetuximab-mediated cellular cytotoxicity against triple negative breast cancer cell lines expressing EGFR. Roberti MP; Barrio MM; Bravo AI; Rocca YS; Arriaga JM; Bianchini M; Mordoh J; Levy EM Breast Cancer Res Treat; 2011 Nov; 130(2):465-75. PubMed ID: 21308409 [TBL] [Abstract][Full Text] [Related]
10. Anti-tumor effects of NK cells and anti-PD-L1 antibody with antibody-dependent cellular cytotoxicity in PD-L1-positive cancer cell lines. Park JE; Kim SE; Keam B; Park HR; Kim S; Kim M; Kim TM; Doh J; Kim DW; Heo DS J Immunother Cancer; 2020 Aug; 8(2):. PubMed ID: 32830112 [TBL] [Abstract][Full Text] [Related]
12. iPSC-derived NK cells expressing high-affinity IgG Fc receptor fusion CD64/16A to mediate flexible, multi-tumor antigen targeting for lymphoma. Dixon KJ; Snyder KM; Khaw M; Hullsiek R; Davis ZB; Matson AW; Shirinbak S; Hancock B; Bjordahl R; Hosking M; Miller JS; Valamehr B; Wu J; Walcheck B Front Immunol; 2024; 15():1407567. PubMed ID: 39100677 [TBL] [Abstract][Full Text] [Related]
13. Increasing FcγRIIa affinity of an FcγRIII-optimized anti-EGFR antibody restores neutrophil-mediated cytotoxicity. Derer S; Glorius P; Schlaeth M; Lohse S; Klausz K; Muchhal U; Desjarlais JR; Humpe A; Valerius T; Peipp M MAbs; 2014; 6(2):409-21. PubMed ID: 24492248 [TBL] [Abstract][Full Text] [Related]
14. FcγRIIIb Restricts Antibody-Dependent Destruction of Cancer Cells by Human Neutrophils. Treffers LW; van Houdt M; Bruggeman CW; Heineke MH; Zhao XW; van der Heijden J; Nagelkerke SQ; Verkuijlen PJJH; Geissler J; Lissenberg-Thunnissen S; Valerius T; Peipp M; Franke K; van Bruggen R; Kuijpers TW; van Egmond M; Vidarsson G; Matlung HL; van den Berg TK Front Immunol; 2018; 9():3124. PubMed ID: 30761158 [TBL] [Abstract][Full Text] [Related]
15. Anti-CD20 rituximab IgG1, IgG3, and IgG4 but not IgG2 subclass trigger Ca Freitas Monteiro M; Papaserafeim M; Réal A; Puga Yung GL; Seebach JD J Leukoc Biol; 2020 Oct; 108(4):1409-1423. PubMed ID: 32620047 [TBL] [Abstract][Full Text] [Related]
16. IgG isotype, glycosylation, and EGFR expression determine the induction of antibody-dependent cellular cytotoxicity in vitro by cetuximab. Patel D; Guo X; Ng S; Melchior M; Balderes P; Burtrum D; Persaud K; Luna X; Ludwig DL; Kang X Hum Antibodies; 2010; 19(4):89-99. PubMed ID: 21178280 [TBL] [Abstract][Full Text] [Related]
17. Ex vivo antibody-dependent cellular cytotoxicity inducibility predicts efficacy of cetuximab. Taylor RJ; Saloura V; Jain A; Goloubeva O; Wong S; Kronsberg S; Nagilla M; Silpino L; de Souza J; Seiwert T; Vokes E; Villaflor V; Cohen EE Cancer Immunol Res; 2015 May; 3(5):567-74. PubMed ID: 25769300 [TBL] [Abstract][Full Text] [Related]
18. Cetuximab therapy in head and neck cancer: immune modulation with interleukin-12 and other natural killer cell-activating cytokines. Luedke E; Jaime-Ramirez AC; Bhave N; Roda J; Choudhary MM; Kumar B; Teknos TN; Carson WE Surgery; 2012 Sep; 152(3):431-40. PubMed ID: 22770960 [TBL] [Abstract][Full Text] [Related]