These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28753344)

  • 1. Scaling Analysis of the Screening Length in Concentrated Electrolytes.
    Lee AA; Perez-Martinez CS; Smith AM; Perkin S
    Phys Rev Lett; 2017 Jul; 119(2):026002. PubMed ID: 28753344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Underscreening in concentrated electrolytes.
    Lee AA; Perez-Martinez CS; Smith AM; Perkin S
    Faraday Discuss; 2017 Jul; 199():239-259. PubMed ID: 28466925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
    Smith AM; Lee AA; Perkin S
    J Phys Chem Lett; 2016 Jun; 7(12):2157-63. PubMed ID: 27216986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiple decay-length extension of the Debye-Hückel theory: to achieve high accuracy also for concentrated solutions and explain under-screening in dilute symmetric electrolytes.
    Kjellander R
    Phys Chem Chem Phys; 2020 Oct; 22(41):23952-23985. PubMed ID: 33073810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-range electrostatic screening in ionic liquids.
    Gebbie MA; Dobbs HA; Valtiner M; Israelachvili JN
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7432-7. PubMed ID: 26040001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A screening of results on the decay length in concentrated electrolytes.
    Jäger H; Schlaich A; Yang J; Lian C; Kondrat S; Holm C
    Faraday Discuss; 2023 Oct; 246(0):520-539. PubMed ID: 37602784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges.
    Kjellander R
    J Chem Phys; 2018 May; 148(19):193701. PubMed ID: 30307204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bjerrum pairs in ionic solutions: A Poisson-Boltzmann approach.
    Adar RM; Markovich T; Andelman D
    J Chem Phys; 2017 May; 146(19):194904. PubMed ID: 28527430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening Lengths in Ionic Fluids.
    Coupette F; Lee AA; Härtel A
    Phys Rev Lett; 2018 Aug; 121(7):075501. PubMed ID: 30169089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-entrant swelling and redissolution of polyelectrolytes arises from an increased electrostatic decay length at high salt concentrations.
    Liu G; Parsons D; Craig VSJ
    J Colloid Interface Sci; 2020 Nov; 579():369-378. PubMed ID: 32615480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correct scaling of the correlation length from a theory for concentrated electrolytes.
    Ciach A; Patsahan O
    J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34186526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening length for finite-size ions in concentrated electrolytes.
    Adar RM; Safran SA; Diamant H; Andelman D
    Phys Rev E; 2019 Oct; 100(4-1):042615. PubMed ID: 31771021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic screening in bulk and under confinement.
    Zeman J; Kondrat S; Holm C
    J Chem Phys; 2021 Nov; 155(20):204501. PubMed ID: 34852490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are Room-Temperature Ionic Liquids Dilute Electrolytes?
    Lee AA; Vella D; Perkin S; Goriely A
    J Phys Chem Lett; 2015 Jan; 6(1):159-63. PubMed ID: 26263105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic depletion forces between planar surfaces.
    Hatlo MM; Curtis RA; Lue L
    J Chem Phys; 2008 Apr; 128(16):164717. PubMed ID: 18447489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decay behavior of screened electrostatic surface forces in ionic liquids: the vital role of non-local electrostatics.
    Kjellander R
    Phys Chem Chem Phys; 2016 Jul; 18(28):18985-9000. PubMed ID: 27356099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Underscreening and hidden ion structures in large scale simulations of concentrated electrolytes.
    Krucker-Velasquez E; Swan JW
    J Chem Phys; 2021 Oct; 155(13):134903. PubMed ID: 34624965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primitive model electrolytes in the near and far field: Decay lengths from DFT and simulations.
    Cats P; Evans R; Härtel A; van Roij R
    J Chem Phys; 2021 Mar; 154(12):124504. PubMed ID: 33810662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intimate relationship between the dielectric response and the decay of intermolecular correlations and surface forces in electrolytes.
    Kjellander R
    Soft Matter; 2019 Jul; 15(29):5866-5895. PubMed ID: 31243425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-layer in ionic liquids: paradigm change?
    Kornyshev AA
    J Phys Chem B; 2007 May; 111(20):5545-57. PubMed ID: 17469864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.