These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Vaporization Dynamics of a Dissipative Quantum Liquid. Bácsi Á; Moca CP; Zaránd G; Dóra B Phys Rev Lett; 2020 Dec; 125(26):266803. PubMed ID: 33449736 [TBL] [Abstract][Full Text] [Related]
5. Classical approach to equilibrium of out-of-time ordered correlators in mixed systems. Notenson T; García-Mata I; Roncaglia AJ; Wisniacki DA Phys Rev E; 2023 Jun; 107(6-1):064207. PubMed ID: 37464719 [TBL] [Abstract][Full Text] [Related]
6. Luttinger-liquid universality in the time evolution after an interaction quench. Karrasch C; Rentrop J; Schuricht D; Meden V Phys Rev Lett; 2012 Sep; 109(12):126406. PubMed ID: 23005968 [TBL] [Abstract][Full Text] [Related]
7. Gauging classical and quantum integrability through out-of-time-ordered correlators. Fortes EM; García-Mata I; Jalabert RA; Wisniacki DA Phys Rev E; 2019 Oct; 100(4-1):042201. PubMed ID: 31770895 [TBL] [Abstract][Full Text] [Related]
8. Reversible Quantum Information Spreading in Many-Body Systems near Criticality. Hummel Q; Geiger B; Urbina JD; Richter K Phys Rev Lett; 2019 Oct; 123(16):160401. PubMed ID: 31702378 [TBL] [Abstract][Full Text] [Related]
9. Temperature Dependence of the Butterfly Effect in a Classical Many-Body System. Bilitewski T; Bhattacharjee S; Moessner R Phys Rev Lett; 2018 Dec; 121(25):250602. PubMed ID: 30608848 [TBL] [Abstract][Full Text] [Related]
10. Momentum-Space Entanglement and Loschmidt Echo in Luttinger Liquids after a Quantum Quench. Dóra B; Lundgren R; Selover M; Pollmann F Phys Rev Lett; 2016 Jul; 117(1):010603. PubMed ID: 27419554 [TBL] [Abstract][Full Text] [Related]
11. Floquet Engineering in Quantum Chains. Kennes DM; de la Torre A; Ron A; Hsieh D; Millis AJ Phys Rev Lett; 2018 Mar; 120(12):127601. PubMed ID: 29694066 [TBL] [Abstract][Full Text] [Related]
12. Light-Cone Spreading of Perturbations and the Butterfly Effect in a Classical Spin Chain. Das A; Chakrabarty S; Dhar A; Kundu A; Huse DA; Moessner R; Ray SS; Bhattacharjee S Phys Rev Lett; 2018 Jul; 121(2):024101. PubMed ID: 30085710 [TBL] [Abstract][Full Text] [Related]
13. Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon. Wang S; Wu F; Zhao S; Watanabe K; Taniguchi T; Zhou C; Wang F Nano Lett; 2019 Apr; 19(4):2360-2365. PubMed ID: 30908062 [TBL] [Abstract][Full Text] [Related]
14. One-dimensional fermions with neither Luttinger-liquid nor Fermi-liquid behavior. Rozhkov AV Phys Rev Lett; 2014 Mar; 112(10):106403. PubMed ID: 24679312 [TBL] [Abstract][Full Text] [Related]
15. Statistics and Dynamics of the Center-of-Mass Coordinate in a Quantum Liquid. Dóra B; Hetényi B; Moca CP Phys Rev Lett; 2018 Aug; 121(5):056803. PubMed ID: 30118249 [TBL] [Abstract][Full Text] [Related]
16. Finite-Size Scaling of Out-of-Time-Ordered Correlators at Late Times. Huang Y; Brandão FGSL; Zhang YL Phys Rev Lett; 2019 Jul; 123(1):010601. PubMed ID: 31386410 [TBL] [Abstract][Full Text] [Related]
17. Many-Body Quantum Interference and the Saturation of Out-of-Time-Order Correlators. Rammensee J; Urbina JD; Richter K Phys Rev Lett; 2018 Sep; 121(12):124101. PubMed ID: 30296114 [TBL] [Abstract][Full Text] [Related]
18. Absence of Orthogonality Catastrophe after a Spatially Inhomogeneous Interaction Quench in Luttinger Liquids. Dóra B; Pollmann F Phys Rev Lett; 2015 Aug; 115(9):096403. PubMed ID: 26371667 [TBL] [Abstract][Full Text] [Related]