These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28753538)

  • 1. Improving the Quality of Positive Datasets for the Establishment of Machine Learning Models for pre-microRNA Detection.
    Demirci MDS; Allmer J
    J Integr Bioinform; 2017 Jul; 14(2):. PubMed ID: 28753538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can MiRBase provide positive data for machine learning for the detection of MiRNA hairpins?
    Saçar MD; Hamzeiy H; Allmer J
    J Integr Bioinform; 2013 Mar; 10(2):215. PubMed ID: 23525896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA categorization using sequence motifs and k-mers.
    Yousef M; Khalifa W; Acar İE; Allmer J
    BMC Bioinformatics; 2017 Mar; 18(1):170. PubMed ID: 28292266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Curation of miRBase Annotation Using Integrated Small RNA High-Throughput Sequencing Data for C. elegans and Drosophila.
    Wang X; Liu XS
    Front Genet; 2011; 2():25. PubMed ID: 22303321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting novel microRNA: a comprehensive comparison of machine learning approaches.
    Stegmayer G; Di Persia LE; Rubiolo M; Gerard M; Pividori M; Yones C; Bugnon LA; Rodriguez T; Raad J; Milone DH
    Brief Bioinform; 2019 Sep; 20(5):1607-1620. PubMed ID: 29800232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mirnacle: machine learning with SMOTE and random forest for improving selectivity in pre-miRNA ab initio prediction.
    Marques YB; de Paiva Oliveira A; Ribeiro Vasconcelos AT; Cerqueira FR
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):474. PubMed ID: 28105918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico miRNA prediction in metazoan genomes: balancing between sensitivity and specificity.
    van der Burgt A; Fiers MW; Nap JP; van Ham RC
    BMC Genomics; 2009 Apr; 10():204. PubMed ID: 19405940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delineating the impact of machine learning elements in pre-microRNA detection.
    Saçar Demirci MD; Allmer J
    PeerJ; 2017; 5():e3131. PubMed ID: 28367373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An estimate of the total number of true human miRNAs.
    Alles J; Fehlmann T; Fischer U; Backes C; Galata V; Minet M; Hart M; Abu-Halima M; Grässer FA; Lenhof HP; Keller A; Meese E
    Nucleic Acids Res; 2019 Apr; 47(7):3353-3364. PubMed ID: 30820533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Detection of Pre-microRNAs.
    Saçar Demirci MD
    Methods Mol Biol; 2022; 2257():167-174. PubMed ID: 34432278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide discovery of pre-miRNAs: comparison of recent approaches based on machine learning.
    Bugnon LA; Yones C; Milone DH; Stegmayer G
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep neural networks for human microRNA precursor detection.
    Zheng X; Fu X; Wang K; Wang M
    BMC Bioinformatics; 2020 Jan; 21(1):17. PubMed ID: 31931701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PlantMirP-Rice: An Efficient Program for Rice Pre-miRNA Prediction.
    Zhang H; Wang H; Yao Y; Yi M
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32570706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Based Methods and Best Practices of microRNA-Target Prediction and Validation.
    Nath N; Simm S
    Adv Exp Med Biol; 2022; 1385():109-131. PubMed ID: 36352212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MaturePred: efficient identification of microRNAs within novel plant pre-miRNAs.
    Xuan P; Guo M; Huang Y; Li W; Huang Y
    PLoS One; 2011; 6(11):e27422. PubMed ID: 22110646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive machine-learning-based analysis of microRNA-target interactions reveals variable transferability of interaction rules across species.
    Ben Or G; Veksler-Lublinsky I
    BMC Bioinformatics; 2021 May; 22(1):264. PubMed ID: 34030625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensemble Classifiers for Multiclass MicroRNA Classification.
    Odenthal L; Allmer J; Yousef M
    Methods Mol Biol; 2022; 2257():235-254. PubMed ID: 34432282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of plant pre-microRNAs and their microRNAs in genome-scale sequences using structure-sequence features and support vector machine.
    Meng J; Liu D; Sun C; Luan Y
    BMC Bioinformatics; 2014 Dec; 15(1):423. PubMed ID: 25547126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensemble-based classification approach for micro-RNA mining applied on diverse metagenomic sequences.
    ElGokhy SM; ElHefnawi M; Shoukry A
    BMC Res Notes; 2014 May; 7():286. PubMed ID: 24884968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creating and maintaining a high-confidence microRNA repository for crop research: A brief review and re-examination of the current crop microRNA registries.
    Meng Y; Ma X; Li J; Shao C
    J Plant Physiol; 2022 Mar; 270():153636. PubMed ID: 35124290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.