These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28753682)

  • 21. Predicting Essential Proteins by Integrating Network Topology, Subcellular Localization Information, Gene Expression Profile and GO Annotation Data.
    Zhang W; Xu J; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2053-2061. PubMed ID: 31095490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Essential protein discovery based on a combination of modularity and conservatism.
    Zhao B; Wang J; Li X; Wu FX
    Methods; 2016 Nov; 110():54-63. PubMed ID: 27402354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Essential Proteins Based on Improved HITS Algorithm.
    Lei X; Wang S; Wu F
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30823614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of essential proteins based on a new combination of topological and biological features in weighted protein-protein interaction networks.
    Elahi A; Babamir SM
    IET Syst Biol; 2018 Dec; 12(6):247-257. PubMed ID: 30472688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A deep learning framework for identifying essential proteins based on multiple biological information.
    Yue Y; Ye C; Peng PY; Zhai HX; Ahmad I; Xia C; Wu YZ; Zhang YH
    BMC Bioinformatics; 2022 Aug; 23(1):318. PubMed ID: 35927611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new method for predicting essential proteins based on participation degree in protein complex and subgraph density.
    Lei X; Yang X
    PLoS One; 2018; 13(6):e0198998. PubMed ID: 29894517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis and identification of essential genes in humans using topological properties and biological information.
    Yang L; Wang J; Wang H; Lv Y; Zuo Y; Li X; Jiang W
    Gene; 2014 Nov; 551(2):138-51. PubMed ID: 25168893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes.
    Srihari S; Yong CH; Patil A; Wong L
    FEBS Lett; 2015 Sep; 589(19 Pt A):2590-602. PubMed ID: 25913176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting essential proteins from protein-protein interactions using order statistics.
    Zhang Z; Ruan J; Gao J; Wu FX
    J Theor Biol; 2019 Nov; 480():274-283. PubMed ID: 31251944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CEGSO: Boosting Essential Proteins Prediction by Integrating Protein Complex, Gene Expression, Gene Ontology, Subcellular Localization and Orthology Information.
    Zhang W; Xue X; Xie C; Li Y; Liu J; Chen H; Li G
    Interdiscip Sci; 2021 Sep; 13(3):349-361. PubMed ID: 33772722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting Essential Proteins Based on Integration of Local Fuzzy Fractal Dimension and Subcellular Location Information.
    Shen L; Zhang J; Wang F; Liu K
    Genes (Basel); 2022 Jan; 13(2):. PubMed ID: 35205217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of human protein complexes from local sub-graphs of protein-protein interaction network based on random forest with topological structure features.
    Li ZC; Lai YH; Chen LL; Zhou X; Dai Z; Zou XY
    Anal Chim Acta; 2012 Mar; 718():32-41. PubMed ID: 22305895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated method for identifying essential proteins from multiplex network model of protein-protein interactions.
    Athira K; Gopakumar G
    J Bioinform Comput Biol; 2020 Aug; 18(4):2050020. PubMed ID: 32795133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional centrality: detecting lethality of proteins in protein interaction networks.
    Tew KL; Li XL; Tan SH
    Genome Inform; 2007; 19():166-77. PubMed ID: 18546514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting Essential Proteins Based on Weighted Degree Centrality.
    Tang X; Wang J; Zhong J; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(2):407-18. PubMed ID: 26355787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying essential proteins from protein-protein interaction networks based on influence maximization.
    Xu W; Dong Y; Guan J; Zhou S
    BMC Bioinformatics; 2022 Aug; 23(Suppl 8):339. PubMed ID: 35974329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disease gene classification with metagraph representations.
    Kircali Ata S; Fang Y; Wu M; Li XL; Xiao X
    Methods; 2017 Dec; 131():83-92. PubMed ID: 28694066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein function prediction based on data fusion and functional interrelationship.
    Meng J; Wekesa JS; Shi GL; Luan YS
    Math Biosci; 2016 Apr; 274():25-32. PubMed ID: 26869536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving protein function prediction using domain and protein complexes in PPI networks.
    Peng W; Wang J; Cai J; Chen L; Li M; Wu FX
    BMC Syst Biol; 2014 Mar; 8():35. PubMed ID: 24655481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein subcellular localization prediction using multiple kernel learning based support vector machine.
    Hasan MA; Ahmad S; Molla MK
    Mol Biosyst; 2017 Mar; 13(4):785-795. PubMed ID: 28247893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.