These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 28753955)
1. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields. Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955 [TBL] [Abstract][Full Text] [Related]
2. Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach. Samandari M; Abrinia K; Sanati-Nezhad A Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400480 [TBL] [Abstract][Full Text] [Related]
3. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation. Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599 [TBL] [Abstract][Full Text] [Related]
4. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Muller PB; Barnkob R; Jensen MJ; Bruus H Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952 [TBL] [Abstract][Full Text] [Related]
5. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation. Ben Haj Slama R; Gilles B; Ben Chiekh M; Béra JC Ultrasonics; 2017 Apr; 76():217-226. PubMed ID: 28135577 [TBL] [Abstract][Full Text] [Related]
6. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Barnkob R; Augustsson P; Laurell T; Bruus H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056307. PubMed ID: 23214876 [TBL] [Abstract][Full Text] [Related]
7. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields. Collins DJ; Ma Z; Ai Y Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956 [TBL] [Abstract][Full Text] [Related]
8. Acoustic streaming in micromachined flexural plate wave devices: numerical simulation and experimental verification. Nguyen NT; White RM IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1463-71. PubMed ID: 18238693 [TBL] [Abstract][Full Text] [Related]
9. Phononic-Crystal-Based Particle Sieving in Continuous Flow: Numerical Simulations. Huang L; Zhou J; Kong D; Li F Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557480 [TBL] [Abstract][Full Text] [Related]
10. Sub-micron particle behaviour and capture at an immuno-sensor surface in an ultrasonic standing wave. Kuznetsova LA; Martin SP; Coakley WT Biosens Bioelectron; 2005 Dec; 21(6):940-8. PubMed ID: 16257663 [TBL] [Abstract][Full Text] [Related]
11. Potential-well model in acoustic tweezers. Kang ST; Yeh CK IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720 [TBL] [Abstract][Full Text] [Related]
12. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles. Hahn P; Leibacher I; Baasch T; Dual J Lab Chip; 2015 Nov; 15(22):4302-13. PubMed ID: 26448531 [TBL] [Abstract][Full Text] [Related]
13. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Devendran C; Albrecht T; Brenker J; Alan T; Neild A Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363 [TBL] [Abstract][Full Text] [Related]
14. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform. Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751 [TBL] [Abstract][Full Text] [Related]
15. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming. Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661 [TBL] [Abstract][Full Text] [Related]
16. Radiation dominated acoustophoresis driven by surface acoustic waves. Guo J; Kang Y; Ai Y J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave. Liu X; Zheng T; Wang C Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304 [TBL] [Abstract][Full Text] [Related]
18. The size dependant behaviour of particles driven by a travelling surface acoustic wave (TSAW). Fakhfouri A; Devendran C; Ahmed A; Soria J; Neild A Lab Chip; 2018 Dec; 18(24):3926-3938. PubMed ID: 30474095 [TBL] [Abstract][Full Text] [Related]
19. Numerical study of acoustophoretic manipulation of particles in microfluidic channels. Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594 [TBL] [Abstract][Full Text] [Related]
20. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration. Zhou Y; Ma Z; Ai Y Anal Chem; 2020 Oct; 92(19):12795-12800. PubMed ID: 32894949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]