These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28753998)

  • 21. Detection of adenosine triphosphate in HeLa cell using capillary electrophoresis-laser induced fluorescence detection based on aptamer and graphene oxide.
    Fang BY; Yao MH; Wang CY; Wang CY; Zhao YD; Chen F
    Colloids Surf B Biointerfaces; 2016 Apr; 140():233-238. PubMed ID: 26764106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification.
    Xu Y; Xu J; Xiang Y; Yuan R; Chai Y
    Biosens Bioelectron; 2014 Jan; 51():293-6. PubMed ID: 23974161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-free chemiluminescent ATP aptasensor based on graphene oxide and an instantaneous derivatization of guanine bases.
    Song Y; Yang X; Li Z; Zhao Y; Fan A
    Biosens Bioelectron; 2014 Jan; 51():232-7. PubMed ID: 23968729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel aptameric biosensor based on the self-assembled DNA-WS
    Li A; Zhang J; Qiu J; Zhao Z; Wang C; Zhao C; Liu H
    Talanta; 2017 Jan; 163():78-84. PubMed ID: 27886773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP.
    Li X; Peng Y; Chai Y; Yuan R; Xiang Y
    Chem Commun (Camb); 2016 Mar; 52(18):3673-6. PubMed ID: 26853492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemiluminescence aptasensor for adenosine triphosphate detection using host-guest recognition between metallocyclodextrin complex and aptamer.
    Chen H; Chen Q; Zhao Y; Zhang F; Yang F; Tang J; He P
    Talanta; 2014 Apr; 121():229-33. PubMed ID: 24607132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-assembled DNA origami-based duplexed aptasensors combined with centrifugal filters for efficient and rechargeable ATP detection.
    Wang X; Mao Z; Chen R; Li S; Ren S; Liang J; Gao Z
    Biosens Bioelectron; 2022 Sep; 211():114336. PubMed ID: 35623250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanomaterial and Aptamer-Based Sensing: Target Binding versus Target Adsorption Illustrated by the Detection of Adenosine and ATP on Metal Oxides and Graphene Oxide.
    Lopez A; Liu J
    Anal Chem; 2021 Feb; 93(5):3018-3025. PubMed ID: 33513006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core-shell Ag@SiO2 nanoparticles.
    Song Q; Peng M; Wang L; He D; Ouyang J
    Biosens Bioelectron; 2016 Mar; 77():237-41. PubMed ID: 26409024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Double-functionalized gold nanoparticles with split aptamer for the detection of adenosine triphosphate.
    Cheng S; Zheng B; Wang M; Lam MH; Ge X
    Talanta; 2013 Oct; 115():506-11. PubMed ID: 24054625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intracellular detection of ATP using an aptamer beacon covalently linked to graphene oxide resisting nonspecific probe displacement.
    Liu Z; Chen S; Liu B; Wu J; Zhou Y; He L; Ding J; Liu J
    Anal Chem; 2014 Dec; 86(24):12229-35. PubMed ID: 25393607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time aptamer quantum dot fluorescent flow sensor.
    Bogomolova A; Aldissi M
    Biosens Bioelectron; 2011 Jun; 26(10):4099-103. PubMed ID: 21515039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecule-binding dependent assembly of split aptamer and γ-cyclodextrin: a sensitive excimer signaling approach for aptamer biosensors.
    Jin F; Lian Y; Li J; Zheng J; Hu Y; Liu J; Huang J; Yang R
    Anal Chim Acta; 2013 Oct; 799():44-50. PubMed ID: 24091373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence aptameric sensor for isothermal circular strand-displacement polymerization amplification detection of adenosine triphosphate.
    Song W; Zhang Q; Xie X; Zhang S
    Biosens Bioelectron; 2014 Nov; 61():51-6. PubMed ID: 24851721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A facile label-free G-quadruplex based fluorescent aptasensor method for rapid detection of ATP.
    Liu H; Ma C; Ning F; Chen H; He H; Wang K; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():164-167. PubMed ID: 28038373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile conversion of ATP-binding RNA aptamer to quencher-free molecular aptamer beacon.
    Park Y; Nim-Anussornkul D; Vilaivan T; Morii T; Kim BH
    Bioorg Med Chem Lett; 2018 Jan; 28(2):77-80. PubMed ID: 29248297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate.
    Kashefi-Kheyrabadi L; Mehrgardi MA
    Biosens Bioelectron; 2012; 37(1):94-8. PubMed ID: 22626828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-performance interactive analysis of split aptamer and HIV-1 Tat on multiwall carbon nanotube-modified field-effect transistor.
    Fatin MF; Rahim Ruslinda A; Gopinath SCB; Arshad MKM
    Int J Biol Macromol; 2019 Mar; 125():414-422. PubMed ID: 30529550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low background signal platform for the detection of ATP: when a molecular aptamer beacon meets graphene oxide.
    He Y; Wang ZG; Tang HW; Pang DW
    Biosens Bioelectron; 2011 Nov; 29(1):76-81. PubMed ID: 21889887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.