These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 28754093)
1. A comparison of the conditional inference survival forest model to random survival forests based on a simulation study as well as on two applications with time-to-event data. Nasejje JB; Mwambi H; Dheda K; Lesosky M BMC Med Res Methodol; 2017 Jul; 17(1):115. PubMed ID: 28754093 [TBL] [Abstract][Full Text] [Related]
2. A comparative study of forest methods for time-to-event data: variable selection and predictive performance. Liu Y; Zhou S; Wei H; An S BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138 [TBL] [Abstract][Full Text] [Related]
3. Unbiased split variable selection for random survival forests using maximally selected rank statistics. Wright MN; Dankowski T; Ziegler A Stat Med; 2017 Apr; 36(8):1272-1284. PubMed ID: 28088842 [TBL] [Abstract][Full Text] [Related]
4. Application of random survival forests in understanding the determinants of under-five child mortality in Uganda in the presence of covariates that satisfy the proportional and non-proportional hazards assumption. Nasejje JB; Mwambi H BMC Res Notes; 2017 Sep; 10(1):459. PubMed ID: 28882171 [TBL] [Abstract][Full Text] [Related]
5. [Application of conditional inference forest in time-to-event data analysis]. Liu Y; Kang P; Xu J; An S Nan Fang Yi Ke Da Xue Xue Bao; 2020 Apr; 40(4):475-482. PubMed ID: 32895141 [TBL] [Abstract][Full Text] [Related]
6. Individual risk prediction: Comparing random forests with Cox proportional-hazards model by a simulation study. Baralou V; Kalpourtzi N; Touloumi G Biom J; 2023 Aug; 65(6):e2100380. PubMed ID: 36169048 [TBL] [Abstract][Full Text] [Related]
7. Novel head and neck cancer survival analysis approach: random survival forests versus Cox proportional hazards regression. Datema FR; Moya A; Krause P; Bäck T; Willmes L; Langeveld T; Baatenburg de Jong RJ; Blom HM Head Neck; 2012 Jan; 34(1):50-8. PubMed ID: 21322080 [TBL] [Abstract][Full Text] [Related]
8. Block Forests: random forests for blocks of clinical and omics covariate data. Hornung R; Wright MN BMC Bioinformatics; 2019 Jun; 20(1):358. PubMed ID: 31248362 [TBL] [Abstract][Full Text] [Related]
9. Ensemble methods for survival function estimation with time-varying covariates. Yao W; Frydman H; Larocque D; Simonoff JS Stat Methods Med Res; 2022 Nov; 31(11):2217-2236. PubMed ID: 35895510 [TBL] [Abstract][Full Text] [Related]
10. Survival forests under test: Impact of the proportional hazards assumption on prognostic and predictive forests for amyotrophic lateral sclerosis survival. Korepanova N; Seibold H; Steffen V; Hothorn T Stat Methods Med Res; 2020 May; 29(5):1403-1419. PubMed ID: 31304888 [TBL] [Abstract][Full Text] [Related]
11. A random forest approach for competing risks based on pseudo-values. Mogensen UB; Gerds TA Stat Med; 2013 Aug; 32(18):3102-14. PubMed ID: 23508720 [TBL] [Abstract][Full Text] [Related]
12. L₁ splitting rules in survival forests. Moradian H; Larocque D; Bellavance F Lifetime Data Anal; 2017 Oct; 23(4):671-691. PubMed ID: 27379423 [TBL] [Abstract][Full Text] [Related]
13. Random Survival Forest in practice: a method for modelling complex metabolomics data in time to event analysis. Dietrich S; Floegel A; Troll M; Kühn T; Rathmann W; Peters A; Sookthai D; von Bergen M; Kaaks R; Adamski J; Prehn C; Boeing H; Schulze MB; Illig T; Pischon T; Knüppel S; Wang-Sattler R; Drogan D Int J Epidemiol; 2016 Oct; 45(5):1406-1420. PubMed ID: 27591264 [TBL] [Abstract][Full Text] [Related]
14. Model-based random forests for ordinal regression. Buri M; Hothorn T Int J Biostat; 2020 Aug; ():. PubMed ID: 32764162 [TBL] [Abstract][Full Text] [Related]
15. Random Survival Forests With Competing Events: A Subdistribution-Based Imputation Approach. Behning C; Bigerl A; Wright MN; Sekula P; Berger M; Schmid M Biom J; 2024 Sep; 66(6):e202400014. PubMed ID: 39162087 [TBL] [Abstract][Full Text] [Related]
16. Identifying Important Risk Factors for Survival in Kidney Graft Failure Patients Using Random Survival Forests. Hamidi O; Poorolajal J; Farhadian M; Tapak L Iran J Public Health; 2016 Jan; 45(1):27-33. PubMed ID: 27057518 [TBL] [Abstract][Full Text] [Related]
17. Buckley-James boosting model based on extreme learning machine and random survival forests. Kong J; Zhang S Biom J; 2023 Jun; 65(5):e2200153. PubMed ID: 37068191 [TBL] [Abstract][Full Text] [Related]
18. Random survival forest with space extensions for censored data. Wang H; Zhou L Artif Intell Med; 2017 Jun; 79():52-61. PubMed ID: 28641924 [TBL] [Abstract][Full Text] [Related]
19. Data generation for the Cox proportional hazards model with time-dependent covariates: a method for medical researchers. Hendry DJ Stat Med; 2014 Feb; 33(3):436-54. PubMed ID: 24014094 [TBL] [Abstract][Full Text] [Related]
20. Survival analysis in breast cancer: evaluating ensemble learning techniques for prediction. Buyrukoğlu G PeerJ Comput Sci; 2024; 10():e2147. PubMed ID: 39145224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]