BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28754122)

  • 21. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The SBML discrete stochastic models test suite.
    Evans TW; Gillespie CS; Wilkinson DJ
    Bioinformatics; 2008 Jan; 24(2):285-6. PubMed ID: 18025005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling biological systems using Dynetica--a simulator of dynamic networks.
    You L; Hoonlor A; Yin J
    Bioinformatics; 2003 Feb; 19(3):435-6. PubMed ID: 12584138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stochastic simulation GUI for biochemical networks.
    Vallabhajosyula RR; Sauro HM
    Bioinformatics; 2007 Jul; 23(14):1859-61. PubMed ID: 17586553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellware--a multi-algorithmic software for computational systems biology.
    Dhar P; Meng TC; Somani S; Ye L; Sairam A; Chitre M; Hao Z; Sakharkar K
    Bioinformatics; 2004 May; 20(8):1319-21. PubMed ID: 14871872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist.
    Drawert B; Hellander A; Bales B; Banerjee D; Bellesia G; Daigle BJ; Douglas G; Gu M; Gupta A; Hellander S; Horuk C; Nath D; Takkar A; Wu S; Lötstedt P; Krintz C; Petzold LR
    PLoS Comput Biol; 2016 Dec; 12(12):e1005220. PubMed ID: 27930676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries.
    Drawert B; Engblom S; Hellander A
    BMC Syst Biol; 2012 Jun; 6():76. PubMed ID: 22727185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bridging the scales: semantic integration of quantitative SBML in graphical multi-cellular models and simulations with EPISIM and COPASI.
    Sütterlin T; Kolb C; Dickhaus H; Jäger D; Grabe N
    Bioinformatics; 2013 Jan; 29(2):223-9. PubMed ID: 23162085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SPSens: a software package for stochastic parameter sensitivity analysis of biochemical reaction networks.
    Sheppard PW; Rathinam M; Khammash M
    Bioinformatics; 2013 Jan; 29(1):140-2. PubMed ID: 23104889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks.
    Thanh VH; Zunino R; Priami C
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):657-667. PubMed ID: 26890923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Meta-stochastic simulation of biochemical models for systems and synthetic biology.
    Sanassy D; Widera P; Krasnogor N
    ACS Synth Biol; 2015 Jan; 4(1):39-47. PubMed ID: 25152014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.
    Ullah M; Schmidt H; Cho KH; Wolkenhauer O
    Syst Biol (Stevenage); 2006 Mar; 153(2):53-60. PubMed ID: 16986253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-Algorithm Particle Simulations with Spatiocyte.
    Arjunan SNV; Takahashi K
    Methods Mol Biol; 2017; 1611():219-236. PubMed ID: 28451982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards abstraction of computational modelling of mammalian cell cycle: Model reduction pipeline incorporating multi-level hybrid petri nets.
    Abroudi A; Samarasinghe S; Kulasiri D
    J Theor Biol; 2020 Jul; 496():110212. PubMed ID: 32142804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and implementation of a tool for translating SBML into the biochemical stochastic pi-calculus.
    Eccher C; Priami C
    Bioinformatics; 2006 Dec; 22(24):3075-81. PubMed ID: 17046974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A versatile petri net based architecture for modeling and simulation of complex biological processes.
    Nagasaki M; Doi A; Matsuno H; Miyano S
    Genome Inform; 2004; 15(1):180-97. PubMed ID: 15712121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. D-VASim: an interactive virtual laboratory environment for the simulation and analysis of genetic circuits.
    Baig H; Madsen J
    Bioinformatics; 2017 Jan; 33(2):297-299. PubMed ID: 27616709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.
    Schaff JC; Gao F; Li Y; Novak IL; Slepchenko BM
    PLoS Comput Biol; 2016 Dec; 12(12):e1005236. PubMed ID: 27959915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stochastic simulation and analysis of biomolecular reaction networks.
    Frazier JM; Chushak Y; Foy B
    BMC Syst Biol; 2009 Jun; 3():64. PubMed ID: 19534796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of P systems with active membranes on CUDA.
    Cecilia JM; García JM; Guerrero GD; Martínez-del-Amor MA; Pérez-Hurtado I; Pérez-Jiménez MJ
    Brief Bioinform; 2010 May; 11(3):313-22. PubMed ID: 20038568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.