BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28754449)

  • 1. The role of NADPH oxidases in diabetic cardiomyopathy.
    Hansen SS; Aasum E; Hafstad AD
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1908-1913. PubMed ID: 28754449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of cardiac pathology in diabetes - Experimental insights.
    Varma U; Koutsifeli P; Benson VL; Mellor KM; Delbridge LMD
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1949-1959. PubMed ID: 29109032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protecting the heart through MK2 modulation, toward a role in diabetic cardiomyopathy and lipid metabolism.
    Ruiz M; Coderre L; Allen BG; Des Rosiers C
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1914-1922. PubMed ID: 28735097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MG53 and disordered metabolism in striated muscle.
    Hu X; Xiao RP
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1984-1990. PubMed ID: 29017896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amylin and diabetic cardiomyopathy - amylin-induced sarcolemmal Ca
    Liu M; Hoskins A; Verma N; Bers DM; Despa S; Despa F
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1923-1930. PubMed ID: 29066284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human embryonic stem cell-derived cardiomyocytes as an in vitro model to study cardiac insulin resistance.
    Geraets IME; Chanda D; van Tienen FHJ; van den Wijngaard A; Kamps R; Neumann D; Liu Y; Glatz JFC; Luiken JJFP; Nabben M
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1960-1967. PubMed ID: 29277329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of cardiac energetics by non-invasive
    Abdurrachim D; Prompers JJ
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1939-1948. PubMed ID: 29175056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy.
    Li JM; Shah AM
    J Am Soc Nephrol; 2003 Aug; 14(8 Suppl 3):S221-6. PubMed ID: 12874435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cluster Differentiating 36 (CD36) Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart.
    Gharib M; Tao H; Fungwe TV; Hajri T
    PLoS One; 2016; 11(5):e0155611. PubMed ID: 27195707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy.
    Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M
    Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of miR-22 attenuates oxidative stress injury in diabetic cardiomyopathy via Sirt 1.
    Tang Q; Len Q; Liu Z; Wang W
    Cardiovasc Ther; 2018 Apr; 36(2):. PubMed ID: 29288528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulin replacement limits progression of diabetic cardiomyopathy in the low-dose streptozotocin-induced diabetic rat.
    Tate M; Deo M; Cao AH; Hood SG; Huynh K; Kiriazis H; Du XJ; Julius TL; Figtree GA; Dusting GJ; Kaye DM; Ritchie RH
    Diab Vasc Dis Res; 2017 Sep; 14(5):423-433. PubMed ID: 28565941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase.
    Teshima Y; Takahashi N; Nishio S; Saito S; Kondo H; Fukui A; Aoki K; Yufu K; Nakagawa M; Saikawa T
    Circ J; 2014; 78(2):300-6. PubMed ID: 24334638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interplay between autophagy and apoptosis in the diabetic heart.
    Ouyang C; You J; Xie Z
    J Mol Cell Cardiol; 2014 Jun; 71():71-80. PubMed ID: 24513079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH oxidase: A membrane-bound enzyme and its inhibitors in diabetic complications.
    Laddha AP; Kulkarni YA
    Eur J Pharmacol; 2020 Aug; 881():173206. PubMed ID: 32442539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy.
    Byrne NJ; Rajasekaran NS; Abel ED; Bugger H
    Free Radic Biol Med; 2021 Jun; 169():317-342. PubMed ID: 33910093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibiting microRNA-144 abates oxidative stress and reduces apoptosis in hearts of streptozotocin-induced diabetic mice.
    Yu M; Liu Y; Zhang B; Shi Y; Cui L; Zhao X
    Cardiovasc Pathol; 2015; 24(6):375-81. PubMed ID: 26164195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of PI3Kγ/Akt pathway increases cardiomyocyte HMGB1 expression in diabetic environment.
    Song J; Liu Q; Tang H; Tao A; Wang H; Kao R; Rui T
    Oncotarget; 2016 Dec; 7(49):80803-80810. PubMed ID: 27821807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential.
    Faria A; Persaud SJ
    Pharmacol Ther; 2017 Apr; 172():50-62. PubMed ID: 27916650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rutin alleviates diabetic cardiomyopathy and improves cardiac function in diabetic ApoEknockout mice.
    Huang R; Shi Z; Chen L; Zhang Y; Li J; An Y
    Eur J Pharmacol; 2017 Nov; 814():151-160. PubMed ID: 28826911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.