These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 28754646)

  • 1. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix.
    Schwiedrzik J; Taylor A; Casari D; Wolfram U; Zysset P; Michler J
    Acta Biomater; 2017 Sep; 60():302-314. PubMed ID: 28754646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscale compressive behavior of hydrated lamellar bone at high strain rates.
    Peruzzi C; Ramachandramoorthy R; Groetsch A; Casari D; Grönquist P; Rüggeberg M; Michler J; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():403-414. PubMed ID: 34245895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtensile failure mechanisms in lamellar bone: Influence of fibrillar orientation, specimen size and hydration.
    Casari D; Kochetkova T; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():391-402. PubMed ID: 34175475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtensile properties and failure mechanisms of cortical bone at the lamellar level.
    Casari D; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Jan; 120():135-145. PubMed ID: 32428682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale.
    Groetsch A; Gourrier A; Schwiedrzik J; Sztucki M; Beck RJ; Shephard JD; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2019 Apr; 89():313-329. PubMed ID: 30858052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extrafibrillar matrix yield stress and failure envelopes for mineralised collagen fibril arrays.
    Speed A; Groetsch A; Schwiedrzik JJ; Wolfram U
    J Mech Behav Biomed Mater; 2020 May; 105():103563. PubMed ID: 32279843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The elasto-plastic nano- and microscale compressive behaviour of rehydrated mineralised collagen fibres.
    Groetsch A; Gourrier A; Casari D; Schwiedrzik J; Shephard JD; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Jul; 164():332-345. PubMed ID: 37059408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone as a Structural Material.
    Zimmermann EA; Ritchie RO
    Adv Healthc Mater; 2015 Jun; 4(9):1287-304. PubMed ID: 25865873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture toughness of bone at the microscale.
    Aldegaither N; Sernicola G; Mesgarnejad A; Karma A; Balint D; Wang J; Saiz E; Shefelbine SJ; Porter AE; Giuliani F
    Acta Biomater; 2021 Feb; 121():475-483. PubMed ID: 33307248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofibril-mediated fracture resistance of bone.
    Tertuliano OA; Edwards BW; Meza LR; Deshpande VS; Greer JR
    Bioinspir Biomim; 2021 Apr; 16(3):. PubMed ID: 33470971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synchrotron radiation µCT indentation of cortical bone: Anisotropic crack propagation, local deformation, and fracture.
    Peña Fernández M; Schwiedrzik J; Bürki A; Peyrin F; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Sep; 167():83-99. PubMed ID: 37127075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear deformation and fracture of human cortical bone.
    Tang T; Ebacher V; Cripton P; Guy P; McKay H; Wang R
    Bone; 2015 Feb; 71():25-35. PubMed ID: 25305520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of test environment on the fracture resistance of cortical bone.
    Shin M; Zhang M; Vom Scheidt A; Pelletier MH; Walsh WR; Martens PJ; Kruzic JJ; Busse B; Gludovatz B
    J Mech Behav Biomed Mater; 2022 May; 129():105155. PubMed ID: 35313188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure mode transition in nacre and bone-like materials.
    Rabiei R; Bekah S; Barthelat F
    Acta Biomater; 2010 Oct; 6(10):4081-9. PubMed ID: 20403464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient two-scale 3D FE model of the bone fibril array: comparison of anisotropic elastic properties with analytical methods and micro-sample testing.
    Alizadeh E; Dehestani M; Zysset P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2127-2147. PubMed ID: 32333217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic crack propagation and deformation in dentin observed by four-dimensional X-ray nano-computed tomography.
    Lu X; Fernández MP; Bradley RS; Rawson SD; O'Brien M; Hornberger B; Leibowitz M; Tozzi G; Withers PJ
    Acta Biomater; 2019 Sep; 96():400-411. PubMed ID: 31254684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106472. PubMed ID: 38432183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining polarized Raman spectroscopy and micropillar compression to study microscale structure-property relationships in mineralized tissues.
    Kochetkova T; Peruzzi C; Braun O; Overbeck J; Maurya AK; Neels A; Calame M; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Jan; 119():390-404. PubMed ID: 33122147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fracture mechanics of human bone: influence of disease and treatment.
    Zimmermann EA; Busse B; Ritchie RO
    Bonekey Rep; 2015; 4():743. PubMed ID: 26380080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.