These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 28754646)

  • 21. In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone.
    Schwiedrzik J; Raghavan R; Bürki A; LeNader V; Wolfram U; Michler J; Zysset P
    Nat Mater; 2014 Jul; 13(7):740-7. PubMed ID: 24907926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating the post-yield behavior of mineralized bone fibril arrays using a 3D non-linear finite element unit-cell model.
    Alizadeh E; Omairey S; Zysset P
    J Mech Behav Biomed Mater; 2023 Mar; 139():105660. PubMed ID: 36638635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competing mechanisms in fracture of staggered mineralized collagen fibril arrays.
    Xu M; An B; Zhang D
    J Mech Behav Biomed Mater; 2023 May; 141():105761. PubMed ID: 36905708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fracture behaviour and toughening mechanisms of dry and wet collagen.
    Bose S; Li S; Mele E; Silberschmidt VV
    Acta Biomater; 2022 Apr; 142():174-184. PubMed ID: 35134565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How tough is bone? Application of elastic-plastic fracture mechanics to bone.
    Yan J; Mecholsky JJ; Clifton KB
    Bone; 2007 Feb; 40(2):479-84. PubMed ID: 17030159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.
    Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA
    J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates.
    Zimmermann EA; Gludovatz B; Schaible E; Busse B; Ritchie RO
    Biomaterials; 2014 Jul; 35(21):5472-81. PubMed ID: 24731707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flaw tolerant bulk and surface nanostructures of biological systems.
    Gao H; Ji B; Buehler MJ; Yao H
    Mech Chem Biosyst; 2004 Mar; 1(1):37-52. PubMed ID: 16783945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elucidating the role of diverse mineralisation paradigms on bone biomechanics - a coarse-grained molecular dynamics investigation.
    Tavakol M; Vaughan TJ
    Nanoscale; 2024 Feb; 16(6):3173-3184. PubMed ID: 38259246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An experimentally informed statistical elasto-plastic mineralised collagen fibre model at the micrometre and nanometre lengthscale.
    Groetsch A; Zysset PK; Varga P; Pacureanu A; Peyrin F; Wolfram U
    Sci Rep; 2021 Jul; 11(1):15539. PubMed ID: 34330938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical deformation mechanisms and properties of amyloid fibrils.
    Choi B; Yoon G; Lee SW; Eom K
    Phys Chem Chem Phys; 2015 Jan; 17(2):1379-89. PubMed ID: 25426573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn.
    Huang W; Zaheri A; Jung JY; Espinosa HD; Mckittrick J
    Acta Biomater; 2017 Dec; 64():1-14. PubMed ID: 28974475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resistance to crack growth in human cortical bone is greater in shear than in tension.
    Norman TL; Nivargikar SV; Burr DB
    J Biomech; 1996 Aug; 29(8):1023-31. PubMed ID: 8817369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach.
    Anssari-Benam A; Barber AH; Bucchi A
    J Mater Sci Mater Med; 2016 Feb; 27(2):42. PubMed ID: 26715134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sub-lamellar microcracking and roles of canaliculi in human cortical bone.
    Ebacher V; Guy P; Oxland TR; Wang R
    Acta Biomater; 2012 Mar; 8(3):1093-100. PubMed ID: 22134162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of geometrical structure variations on the viscoelastic and anisotropic behaviour of cortical bone using multi-scale finite element modelling.
    Atthapreyangkul A; Hoffman M; Pearce G
    J Mech Behav Biomed Mater; 2021 Jan; 113():104153. PubMed ID: 33125948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Fracture toughness of cortical bone in tension, shear, and tear--a comparison of longitudinal and transverse fracture].
    Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Sep; 14(3):199-204. PubMed ID: 11326832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone.
    Barth HD; Launey ME; Macdowell AA; Ager JW; Ritchie RO
    Bone; 2010 Jun; 46(6):1475-85. PubMed ID: 20206724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.