BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28754922)

  • 1. ShadowY: a dark yellow fluorescent protein for FLIM-based FRET measurement.
    Murakoshi H; Shibata ACE
    Sci Rep; 2017 Jul; 7(1):6791. PubMed ID: 28754922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP.
    Murakoshi H; Lee SJ; Yasuda R
    Brain Cell Biol; 2008 Aug; 36(1-4):31-42. PubMed ID: 18512154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP.
    Ganesan S; Ameer-Beg SM; Ng TT; Vojnovic B; Wouters FS
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4089-94. PubMed ID: 16537489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2.
    Mastop M; Bindels DS; Shaner NC; Postma M; Gadella TWJ; Goedhart J
    Sci Rep; 2017 Sep; 7(1):11999. PubMed ID: 28931898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay.
    Bayle V; Nussaume L; Bhat RA
    Plant Physiol; 2008 Sep; 148(1):51-60. PubMed ID: 18621983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition.
    Padilla-Parra S; Audugé N; Lalucque H; Mevel JC; Coppey-Moisan M; Tramier M
    Biophys J; 2009 Oct; 97(8):2368-76. PubMed ID: 19843469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A feasible add-on upgrade on a commercial two-photon FLIM microscope for optimal FLIM-FRET imaging of CFP-YFP pairs.
    Xu L; Wang L; Zhang Z; Huang ZL
    J Fluoresc; 2013 May; 23(3):543-9. PubMed ID: 23456419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
    Goedhart J; Vermeer JE; Adjobo-Hermans MJ; van Weeren L; Gadella TW
    PLoS One; 2007 Oct; 2(10):e1011. PubMed ID: 17925859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments.
    Martin KJ; McGhee EJ; Schwarz JP; Drysdale M; Brachmann SM; Stucke V; Sansom OJ; Anderson KI
    PLoS One; 2018; 13(1):e0183585. PubMed ID: 29293509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Interaction Studies by Measuring Förster Resonance Energy Transfer Through Fluorescence Lifetime Imaging Microscopy (FRET/FLIM).
    Fäßler F; Pimpl P
    Methods Mol Biol; 2017; 1662():159-170. PubMed ID: 28861826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy.
    Day RN
    Methods; 2014 Mar; 66(2):200-7. PubMed ID: 23806643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging activation of two Ras isoforms simultaneously in a single cell.
    Peyker A; Rocks O; Bastiaens PI
    Chembiochem; 2005 Jan; 6(1):78-85. PubMed ID: 15637661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.
    Detert Oude Weme RG; Kovács ÁT; de Jong SJ; Veening JW; Siebring J; Kuipers OP
    PLoS One; 2015; 10(4):e0123239. PubMed ID: 25886351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual observation of the ATP-evoked small GTPase activation and Ca
    Nakahata Y; Nabekura J; Murakoshi H
    Sci Rep; 2016 Dec; 6():39564. PubMed ID: 28004840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical methods in the study of protein-protein interactions.
    Masi A; Cicchi R; Carloni A; Pavone FS; Arcangeli A
    Adv Exp Med Biol; 2010; 674():33-42. PubMed ID: 20549938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FLIM-FRET Protein-Protein Interaction Assay.
    Bonilla PA; Shrestha R
    Methods Mol Biol; 2024; 2797():261-269. PubMed ID: 38570466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ.
    Kumar S; Alibhai D; Margineanu A; Laine R; Kennedy G; McGinty J; Warren S; Kelly D; Alexandrov Y; Munro I; Talbot C; Stuckey DW; Kimberly C; Viellerobe B; Lacombe F; Lam EW; Taylor H; Dallman MJ; Stamp G; Murray EJ; Stuhmeier F; Sardini A; Katan M; Elson DS; Neil MA; Dunsby C; French PM
    Chemphyschem; 2011 Feb; 12(3):609-26. PubMed ID: 21337485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.