BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28755203)

  • 1. MicroRNAs recruit eIF4E2 to repress translation of target mRNAs.
    Chen S; Gao G
    Protein Cell; 2017 Oct; 8(10):750-761. PubMed ID: 28755203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tristetraprolin Recruits Eukaryotic Initiation Factor 4E2 To Repress Translation of AU-Rich Element-Containing mRNAs.
    Tao X; Gao G
    Mol Cell Biol; 2015 Nov; 35(22):3921-32. PubMed ID: 26370510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Cells Cultured under Physiological Oxygen Utilize Two Cap-binding Proteins to recruit Distinct mRNAs for Translation.
    Timpano S; Uniacke J
    J Biol Chem; 2016 May; 291(20):10772-82. PubMed ID: 27002144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules.
    Frydryskova K; Masek T; Borcin K; Mrvova S; Venturi V; Pospisek M
    BMC Mol Biol; 2016 Aug; 17(1):21. PubMed ID: 27578149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles and interactions of the specialized initiation factors EIF4E2, EIF4E5, and EIF4E6 in Trypanosoma brucei: EIF4E2 maintains the abundances of S-phase mRNAs.
    Falk F; Melo Palhares R; Waithaka A; Clayton C
    Mol Microbiol; 2022 Oct; 118(4):457-476. PubMed ID: 36056730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the consequences of eIF4E2 (4EHP) interaction with 4E-transporter on its cellular distribution in HeLa cells.
    Kubacka D; Kamenska A; Broomhead H; Minshall N; Darzynkiewicz E; Standart N
    PLoS One; 2013; 8(8):e72761. PubMed ID: 23991149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An oxygen-regulated switch in the protein synthesis machinery.
    Uniacke J; Holterman CE; Lachance G; Franovic A; Jacob MD; Fabian MR; Payette J; Holcik M; Pause A; Lee S
    Nature; 2012 May; 486(7401):126-9. PubMed ID: 22678294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila.
    Fukaya T; Iwakawa HO; Tomari Y
    Mol Cell; 2014 Oct; 56(1):67-78. PubMed ID: 25280104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A second eIF4E protein in Schizosaccharomyces pombe has distinct eIF4G-binding properties.
    Ptushkina M; Berthelot K; von der Haar T; Geffers L; Warwicker J; McCarthy JE
    Nucleic Acids Res; 2001 Nov; 29(22):4561-9. PubMed ID: 11713305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function.
    Humphreys DT; Westman BJ; Martin DI; Preiss T
    Proc Natl Acad Sci U S A; 2005 Nov; 102(47):16961-6. PubMed ID: 16287976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DEAD Box Protein Family Member DDX28 Is a Negative Regulator of Hypoxia-Inducible Factor 2α- and Eukaryotic Initiation Factor 4E2-Directed Hypoxic Translation.
    Evagelou SL; Bebenek O; Specker EJ; Uniacke J
    Mol Cell Biol; 2020 Feb; 40(6):. PubMed ID: 31907278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin.
    Korneeva NL; Song A; Gram H; Edens MA; Rhoads RE
    J Biol Chem; 2016 Feb; 291(7):3455-67. PubMed ID: 26668315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and characterization of conserved binding of eIF4E 1 (CBE1), a eukaryotic translation initiation factor 4E-binding plant protein.
    Patrick RM; Lee JCH; Teetsel JRJ; Yang SH; Choy GS; Browning KS
    J Biol Chem; 2018 Nov; 293(44):17240-17247. PubMed ID: 30213859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The eIF4E homolog 4EHP (eIF4E2) regulates hippocampal long-term depression and impacts social behavior.
    Wiebe S; Meng XQ; Kim SH; Zhang X; Lacaille JC; Aguilar-Valles A; Sonenberg N
    Mol Autism; 2020 Nov; 11(1):92. PubMed ID: 33225984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing.
    Kamenska A; Lu WT; Kubacka D; Broomhead H; Minshall N; Bushell M; Standart N
    Nucleic Acids Res; 2014 Mar; 42(5):3298-313. PubMed ID: 24335285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression.
    Iwasaki S; Kawamata T; Tomari Y
    Mol Cell; 2009 Apr; 34(1):58-67. PubMed ID: 19268617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation.
    Castelli LM; Talavera D; Kershaw CJ; Mohammad-Qureshi SS; Costello JL; Rowe W; Sims PF; Grant CM; Hubbard SJ; Ashe MP; Pavitt GD
    PLoS Genet; 2015 May; 11(5):e1005233. PubMed ID: 25973932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repression of microRNA-768-3p by MEK/ERK signalling contributes to enhanced mRNA translation in human melanoma.
    Jiang CC; Croft A; Tseng HY; Guo ST; Jin L; Hersey P; Zhang XD
    Oncogene; 2014 May; 33(20):2577-88. PubMed ID: 23770856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast.
    Gao Q; Das B; Sherman F; Maquat LE
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4258-63. PubMed ID: 15753296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SARS-CoV-2 protein NSP2 enhances microRNA-mediated translational repression.
    Naeli P; Zhang X; Snell PH; Chatterjee S; Kamran M; Ladak RJ; Orr N; Duchaine T; Sonenberg N; Jafarnejad SM
    J Cell Sci; 2023 Oct; 136(19):. PubMed ID: 37732428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.