These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 28755236)
21. Proteomic analysis of papaya fruit ripening using 2DE-DIGE. Nogueira SB; Labate CA; Gozzo FC; Pilau EJ; Lajolo FM; Oliveira do Nascimento JR J Proteomics; 2012 Feb; 75(4):1428-39. PubMed ID: 22134357 [TBL] [Abstract][Full Text] [Related]
22. Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes. Bianco L; Lopez L; Scalone AG; Di Carli M; Desiderio A; Benvenuto E; Perrotta G J Proteomics; 2009 May; 72(4):586-607. PubMed ID: 19135558 [TBL] [Abstract][Full Text] [Related]
23. The major proteins of the seed of the fruit of the date palm (Phoenix dactylifera L.): Characterisation and emulsifying properties. Akasha I; Campbell L; Lonchamp J; Euston SR Food Chem; 2016 Apr; 197(Pt A):799-806. PubMed ID: 26617019 [TBL] [Abstract][Full Text] [Related]
24. Proteome analysis of grape skins during ripening. Deytieux C; Geny L; Lapaillerie D; Claverol S; Bonneu M; Donèche B J Exp Bot; 2007; 58(7):1851-62. PubMed ID: 17426054 [TBL] [Abstract][Full Text] [Related]
25. Proteins involved in biotic and abiotic stress responses as the most significant biomarkers in the ripening of Pinot Noir skins. Negri AS; Robotti E; Prinsi B; Espen L; Marengo E Funct Integr Genomics; 2011 Jun; 11(2):341-55. PubMed ID: 21234783 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of different methods of protein extraction and identification of differentially expressed proteins upon ethylene-induced early-ripening in banana peels. Zhang LL; Feng RJ; Zhang YD J Sci Food Agric; 2012 Aug; 92(10):2106-15. PubMed ID: 22278681 [TBL] [Abstract][Full Text] [Related]
28. An improved plant leaf protein extraction method for high resolution two-dimensional polyacrylamide gel electrophoresis and comparative proteomics. Alam I; Sharmin S; Kim KH; Kim YG; Lee J; Lee BH Biotech Histochem; 2013 Feb; 88(2):61-75. PubMed ID: 23072551 [TBL] [Abstract][Full Text] [Related]
29. Comparative proteomic analysis between early developmental stages of the Coffea arabica fruits. Bandil GB; Etto RM; Galvão CW; Ramos HJ; Souza EM; Pedrosa FO; Chaves DF; Huergo LF; Ayub RA Genet Mol Res; 2013 Oct; 12(4):5102-10. PubMed ID: 24301770 [TBL] [Abstract][Full Text] [Related]
30. Disease proteomics of high-molecular-mass proteins by two-dimensional gel electrophoresis with agarose gels in the first dimension (Agarose 2-DE). Oh-Ishi M; Maeda T J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):211-22. PubMed ID: 17141588 [TBL] [Abstract][Full Text] [Related]
31. Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max. Gupta R; Lee SJ; Min CW; Kim SW; Park KH; Bae DW; Lee BW; Agrawal GK; Rakwal R; Kim ST J Proteomics; 2016 Oct; 148():65-74. PubMed ID: 27474340 [TBL] [Abstract][Full Text] [Related]
32. The impact of sodium nitroprusside and ozone in kiwifruit ripening physiology: a combined gene and protein expression profiling approach. Tanou G; Minas IS; Karagiannis E; Tsikou D; Audebert S; Papadopoulou KK; Molassiotis A Ann Bot; 2015 Sep; 116(4):649-62. PubMed ID: 26159933 [TBL] [Abstract][Full Text] [Related]
33. Proteomic and metabolomic study of wax apple (Syzygium samarangense) fruit during ripening process. Jamil NAM; Rahmad N; Rosli NHM; Al-Obaidi JR Electrophoresis; 2018 Dec; 39(23):2954-2964. PubMed ID: 30074628 [TBL] [Abstract][Full Text] [Related]
34. Quantitative Proteomics-Based Reconstruction and Identification of Metabolic Pathways and Membrane Transport Proteins Related to Sugar Accumulation in Developing Fruits of Pear (Pyrus communis). Reuscher S; Fukao Y; Morimoto R; Otagaki S; Oikawa A; Isuzugawa K; Shiratake K Plant Cell Physiol; 2016 Mar; 57(3):505-18. PubMed ID: 26755692 [TBL] [Abstract][Full Text] [Related]
35. Exploration of beer proteome using OFFGEL prefractionation in combination with two-dimensional gel electrophoresis with narrow pH range gradients. Konečná H; Müller L; Dosoudilová H; Potěšil D; Buršíková J; Sedo O; Márová I; Zdráhal Z J Agric Food Chem; 2012 Mar; 60(10):2418-26. PubMed ID: 22353030 [TBL] [Abstract][Full Text] [Related]
36. Proteomic analysis of pear (Pyrus pyrifolia) ripening process provides new evidence for the sugar/acid metabolism difference between core and mesocarp. Gao Z; Zhang C; Luo M; Wu Y; Duan S; Li J; Wang L; Song S; Xu W; Wang S; Zhang C; Ma C Proteomics; 2016 Dec; 16(23):3025-3041. PubMed ID: 27688055 [TBL] [Abstract][Full Text] [Related]
37. Proteomics approach reveals mechanism underlying susceptibility of loquat fruit to sunburn during color changing period. Jiang JM; Lin YX; Chen YY; Deng CJ; Gong HW; Xu QZ; Zheng SQ; Chen W Food Chem; 2015 Jun; 176():388-95. PubMed ID: 25624247 [TBL] [Abstract][Full Text] [Related]
38. Qualitative and quantitative evaluation of protein extraction protocols for apple and strawberry fruit suitable for two-dimensional electrophoresis and mass spectrometry analysis. Zheng Q; Song J; Doncaster K; Rowland E; Byers DM J Agric Food Chem; 2007 Mar; 55(5):1663-73. PubMed ID: 17295508 [TBL] [Abstract][Full Text] [Related]
39. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening. Andrade Jde M; Toledo TT; Nogueira SB; Cordenunsi BR; Lajolo FM; do Nascimento JR J Proteomics; 2012 Jun; 75(11):3331-41. PubMed ID: 22504795 [TBL] [Abstract][Full Text] [Related]
40. Apple hypanthium firmness: new insights from comparative proteomics. Marondedze C; Thomas LA Appl Biochem Biotechnol; 2012 Sep; 168(2):306-26. PubMed ID: 22733236 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]