BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28755419)

  • 1. Quality assurance in proton beam therapy using a plastic scintillator and a commercially available digital camera.
    Almurayshid M; Helo Y; Kacperek A; Griffiths J; Hebden J; Gibson A
    J Appl Clin Med Phys; 2017 Sep; 18(5):210-219. PubMed ID: 28755419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionization quenching correction for a 3D scintillator detector exposed to scanning proton beams.
    Alsanea F; Darne C; Robertson D; Beddar S
    Phys Med Biol; 2020 Apr; 65(7):075005. PubMed ID: 32079001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the response of miniature scintillation detectors when irradiated with proton beams.
    Archambault L; Polf JC; Beaulieu L; Beddar S
    Phys Med Biol; 2008 Apr; 53(7):1865-76. PubMed ID: 18364543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quenching correction for volumetric scintillation dosimetry of proton beams.
    Robertson D; Mirkovic D; Sahoo N; Beddar S
    Phys Med Biol; 2013 Jan; 58(2):261-73. PubMed ID: 23257200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronized high-speed scintillation imaging of proton beams, generated by a gantry-mounted synchrocyclotron, on a pulse-by-pulse basis.
    Goddu SM; Westphal GT; Sun B; Wu Y; Bloch CD; Bradley JD; Darafsheh A
    Med Phys; 2022 Sep; 49(9):6209-6220. PubMed ID: 35760763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A real-time method to simultaneously measure linear energy transfer and dose for proton therapy using organic scintillators.
    Alsanea F; Therriault-Proulx F; Sawakuchi G; Beddar S
    Med Phys; 2018 Apr; 45(4):1782-1789. PubMed ID: 29446078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical expression for depth-light curves of therapeutic proton beams in a quenching scintillator.
    Kelleter L; Jolly S
    Med Phys; 2020 Jun; 47(5):2300-2308. PubMed ID: 32072646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.
    Ebenau M; Radeck D; Bambynek M; Sommer H; Flühs D; Spaan B; Eichmann M
    Med Phys; 2016 Aug; 43(8):4598. PubMed ID: 27487876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields.
    Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H
    Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the quenching correction factors for plastic scintillation detectors in therapeutic high-energy proton beams.
    Wang LL; Perles LA; Archambault L; Sahoo N; Mirkovic D; Beddar S
    Phys Med Biol; 2012 Dec; 57(23):7767-81. PubMed ID: 23128412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography.
    Kroll F; Pawelke J; Karsch L
    Med Phys; 2013 Aug; 40(8):082104. PubMed ID: 23927341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a plastic scintillating detector for the Small Animal Radiation Research Platform (SARRP).
    Johnstone CD; Therriault-Proulx F; Beaulieu L; Bazalova-Carter M
    Med Phys; 2019 Jan; 46(1):394-404. PubMed ID: 30417377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a small-core graphite calorimeter for dosimetry and scintillator quenching corrections in a therapeutic proton beam.
    Christensen JB; Vestergaard A; Andersen CE
    Phys Med Biol; 2020 Nov; 65(21):215023. PubMed ID: 32526719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study of a plastic scintillating plate-based treatment beam fluence monitoring system for use in pencil beam scanning proton therapy.
    Jeong S; Chung K; Ahn SH; Lee B; Seo J; Yoon M
    Med Phys; 2020 Feb; 47(2):703-712. PubMed ID: 31732965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton beam dosimetry: a comparison between a plastic scintillator, ionization chamber and Faraday cup.
    Ghergherehchi M; Afarideh H; Ghannadi M; Mohammadzadeh A; Aslani GR; Boghrati B
    J Radiat Res; 2010; 51(4):423-30. PubMed ID: 20679742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relating ionization quenching in organic plastic scintillators to basic material properties by modelling excitation density transport and amorphous track structure during proton irradiation.
    Christensen JB; Andersen CE
    Phys Med Biol; 2018 Sep; 63(19):195010. PubMed ID: 30183687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the impact of lead doping on plastic scintillator response to radiation.
    Nusrat H; Pang G; Ahmad SB; Keller B; Sarfehnia A
    Med Phys; 2019 Sep; 46(9):4215-4223. PubMed ID: 31264229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical use of a plastic scintillator for quality assurance of electron beam therapy.
    Yogo K; Tatsuno Y; Tsuneda M; Aono Y; Mochizuki D; Fujisawa Y; Matsushita A; Ishigami M; Ishiyama H; Hayakawa K
    Phys Med Biol; 2017 Jun; 62(11):4551-4570. PubMed ID: 28319041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passively scattered proton beam entrance dosimetry with a plastic scintillation detector.
    Wootton L; Holmes C; Sahoo N; Beddar S
    Phys Med Biol; 2015 Feb; 60(3):1185-98. PubMed ID: 25591037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of the potential of liquid scintillators for real-time 3D dosimetry of intensity modulated proton beams.
    Beddar S; Archambault L; Sahoo N; Poenisch F; Chen GT; Gillin MT; Mohan R
    Med Phys; 2009 May; 36(5):1736-43. PubMed ID: 19544791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.